<table>
<thead>
<tr>
<th>System Categories</th>
<th>Emission Source Categories</th>
<th>Emission Factor Sources</th>
<th>Description</th>
<th>Explanatory Notes/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission Pipeline</td>
<td>Transmission Pipeline Leaks</td>
<td>Engineering Estimate</td>
<td>Emissions estimated from size of breach / pressure / duration calculation</td>
<td>For 2017, the INGAA Greenhouse Gas Emission Estimation Guidelines for Natural Gas Transmission and Storage - Volume 1 GHG Emission Estimation Methodologies and Procedures (September 28, 2005 - Revision 2) - Table 4-4 study provides the best available estimate of emissions for Transmission Pipeline, which includes emissions from Flanges and Valves. The emissions for the component leaks reported in "Component leaks" worksheet are accounted for by this mileage-based INGAA Emission Factor.</td>
</tr>
<tr>
<td>All damages (as defined by PHMSA)</td>
<td>All damages (as defined by PHMSA)</td>
<td>Engineering Estimate</td>
<td>Emissions estimated either from modelling or size of breach / pressure / duration</td>
<td>For the Transmission Odor Intensity Test; Annual Emission = Number of Tests * Volume per Test</td>
</tr>
<tr>
<td>Transmission Pipeline Blowdowns</td>
<td>Transmission Pipeline Blowdowns</td>
<td>Engineering Estimate</td>
<td>Unique equipment volume (corrected for pressure and temperature)</td>
<td>The following equations adhere to manufacturing specifications: For Transmission (BTU) Gas Chromatographs (GCs); Annual Emission = (Number of GCs * Sample Flow + Number of GC Streams * Bypass Flow) * Unit conversion factor. For Transmission (Gas Quality) Gas Chromatographs (GCs); Annual Emission = (Number of GCs * Sample Flow + Number of GCs + Number of Additional Streams) * Flow * Volume per Test Unit conversion factor. For Odorizer; Annual Emission = Number of strokes * Emission per stroke, where Number of strokes = (Gas Volume * Injection Rate) * (Odorant Density * Pump Stroke Volume) * Unit conversion factor.</td>
</tr>
</tbody>
</table>
| Pneumatic Devices - Pneumatic/Hydraulic Valve Operators, and Turbine Valve Operators | Pneumatic Devices - Pneumatic/Hydraulic Valve Operators, and Turbine Valve Operators | MRR | Low Continuous Bleed = 0.0336 Mscf/day/dev
Intermittent Bleed = 0.0676 Mscf/day/dev
High Continuous Bleed = 0.4457 Mscf/day/dev
Hydraulic Valve Operator = TBD
Turbine Valve Operator = TBD | 1.27 Mscf/yr/odorizer (if manufacturing specs are available, use the manufacturing specs instead of the default emission factor) |
| Pressure Relief Valves | Pressure Relief Valves | MRR | Pressure relief valve = 0.8713 Mscf/day/dev | |
| Odorizer (Odorizer and Gas Sampling Vents) | Odorizer (Odorizer and Gas Sampling Vents) | TCR | 1.27 Mscf/yr/odorizer | The vented emissions for pneumatic devices reported in the "Component Vented Emissions" worksheet for Transmission M&R Stations are accounted for as part of the station’s emission factor, which is 1,554.8 Mscf/yr/station. The fugitive emissions for the component leaks reported in "Component leaks" worksheet for Transmission M&R Stations are accounted for as part of the station’s emission factor, which is 1,554.8 Mscf/yr/station. |
| M&R Stations - Farm Taps & Direct Industrial Sales | M&R Stations - Farm Taps & Direct Industrial Sales | MRR | # of leaks > 10,000 ppm x Subpart W EF
Farmland Tap / Direct Sale = 12.2 Mscf/day/station
Non-compressor components
Valve = 0.1572 Mscf/day/dev
Connector = 0.1399 Mscf/day/dev
Open-ended line = 0.276 Mscf/day/dev
Pressure relief valve = 0.0492 Mscf/day/dev
Meter = 0.0728 Mscf/day/dev | The vented emissions for pneumatic devices reported in the "Component Vented Emissions" worksheet for Transmission M&R Stations are accounted for as part of the station’s emission factor, which is 1,554.8 Mscf/yr/station. The fugitive emissions for the component leaks reported in "Component leaks" worksheet for Transmission M&R Stations are accounted for as part of the station’s emission factor, which is 1,554.8 Mscf/yr/station. |
Ref: Table W-3 of Subpart W of Part 98
Trans-to-trans = 1,554.8 Mscf/day/station
Non-compressor components
Valve = 0.1572 Mscf/day/dev
Connector = 0.1399 Mscf/day/dev
Open-ended line = 0.276 Mscf/day/dev
Pressure relief valve = 0.0492 Mscf/day/dev
Meter = 0.0728 Mscf/day/dev | The vented emissions for pneumatic devices reported in the "Component Vented Emissions" worksheet for Transmission M&R Stations are accounted for as part of the station’s emission factor, which is 1,554.8 Mscf/yr/station. The fugitive emissions for the component leaks reported in "Component leaks" worksheet for Transmission M&R Stations are accounted for as part of the station’s emission factor, which is 1,554.8 Mscf/yr/station. |
<table>
<thead>
<tr>
<th>System Categories</th>
<th>Emission Source Categories</th>
<th>Emission Factor Sources</th>
<th>Description</th>
<th>Explanatory Notes/Comments</th>
</tr>
</thead>
</table>
| **Transmission Compressor Stations** | Transmission M&R Leaks | MRR | # of leaks > 10,000 ppm x Subpart W EF (ref: Table W-3 of Subpart W of Part 98)
Non-compressor components
Valve = 0.1572 Mscf/day/dev
Connector = 0.1399 Mscf/day/dev
Open-ended line = 0.276 Mscf/day/dev
Pressure relief valve = 0.0492 Mscf/day/dev
Meter = 0.0728 Mscf/day/dev | See Appendix 2 Explanatory Notes / Comments |
| | Transmission M&R blowdown | Engineering Estimate | Unique equipment volume (corrected for pressure and temperature) | # of leaks > 10,000 ppm x Subpart W EF (ref: Table W-3 of Subpart W of Part 98)
Compressor components
Valve = 0.35616 Mscf/day/dev
Connector = 0.13416 Mscf/day/dev
Open-ended line = 0.41448 Mscf/day/dev
Pressure relief valve = 0.95184 Mscf/day/dev
Meter = 0.46392 Mscf/day/dev | |
| | Compressor Station - Transmission storage tanks | MRR | Direct measurement of tank vapor vent stack + operating hours (pg 218-219 of Regulation for MRR) | Annual Emissions for Tank Pressure Release Due to Temperature Fluctuation: The initial volume of gas released is calculated based on starting and ending pressures assuming a constant -260°F in the tank. This volume is then adjusted to standard conditions (sulf). Note: Pressure normally fluctuates slightly in the main tank due to instrument measurement accuracy, but any drop in pressure 1 psi or greater is typically due to a fill or maintenance procedure (including the vapor releases to maintain a safe operating pressure). An hourly pressure read from the LNG SCADA data is downloaded and all pressure drops meeting the above criteria are captured. |
| | Compressors (Centrifugal) - Transmission – data collection will require time spent in modes (active, pressurized idle, de-pressurized idle), compressor venting | MRR | Direct measurement x operating hours (operating mode) | |
| | Compressors (Reciprocating) - Transmission – data collection will require time spent in modes (active, pressurized idle, de-pressurized idle), compressor rod packing venting | MRR | Direct measurement x operating hours (operating mode) | |
| | Compressor station - Equipment and pipeline blowdowns | MRR | Eq. W - 144
of blowdowns * piping volume | LNG Tank annual emissions for Total Gas Lost Due to Filling Operations: The volume of gas delivered is recorded as gallons. This volume is then converted to standard conditions (sulf). |
| | Compressor Station - Natural gas pneumatic device venting | MRR | Low Continuous Bleed = 0.0336 Mscf/day/dev
Intermittent Bleed = 0.0676 Mscf/day/dev
High Continuous Bleed = 0.4457 Mscf/day/dev | |
| | Distribution Mains (Below-Ground Leaks) | GRI (1996) | Unprotected Steel Main = 0.1548 Mscf/day/leak
Protected Steel Main = 0.0612 Mscf/day/leak
Plastic Main = 0.2988 Mscf/day/leak | |
| | Distribution Mains (Above Ground Leaks) - Not MSA | GRI (1996) | Unprotected Steel Main = 0.1548 Mscf/day/leak
Protected Steel Main = 0.0612 Mscf/day/leak
Plastic Main = 0.2988 Mscf/day/leak | |
| | Distribution Service (Below-Ground Leaks) | GRI (1996) | Copper = 0.0226 Mscf/day/leak
Unprotected Steel Service = 0.0600 Mscf/day/leak
Protected Steel Service = 0.0276 Mscf/day/leak
Plastic Service = 0.0089 Mscf/day/leak | |
| | Distribution Service (Above-Ground Leaks) - Not MSA | GRI (1996) | Copper = 0.0226 Mscf/day/leak
Unprotected Steel Service = 0.0600 Mscf/day/leak
Protected Steel Service = 0.0276 Mscf/day/leak
Plastic Service = 0.0089 Mscf/day/leak | |
<p>| | Distribution Main, Pressure Relief Valves | MRR | Pressure relief valve = 0.0009 Mscf/day/dev | |</p>
<table>
<thead>
<tr>
<th>System Categories</th>
<th>Emission Source Categories</th>
<th>Emission Factor Sources</th>
<th>Description</th>
<th>Explanatory Notes/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution Mains and Services Pipelines</td>
<td>Distribution Mains and Services blowdown</td>
<td>MRR</td>
<td>Equation W-14A , Eq. W-35 , Eq. W-36</td>
<td>(\text{Annual Emission} = \pi \times \left(\frac{\text{Pipe Diameter}}{2} \right)^2 \times \text{Blowdown Footage} \times \text{Pressure conversion factor/Natural Gas Compressibility Factor}). Note that for shut-in pressures less than 100 psig, the Natural Gas Compressibility Factor is 1.</td>
</tr>
<tr>
<td>All damages (as defined by PHMSA)</td>
<td>MRR</td>
<td>Equation W-14A , Eq. W-35 , Eq. W-36</td>
<td>(\text{Annual Emission} = \frac{\text{Pipe Diameter}^2}{4} \times \text{Blowdown Footage} \times \text{Pressure conversion factor/Natural Gas Compressibility Factor}). Note that for shut-in pressures less than 100 psig, the Natural Gas Compressibility Factor is 1.</td>
<td></td>
</tr>
</tbody>
</table>

Pneumatic Devices - Pneumatic/Hydraulic Valve Operators, and Turbine Valve Operators

<table>
<thead>
<tr>
<th>System Categories</th>
<th>Emission Source Categories</th>
<th>Emission Factor Sources</th>
<th>Description</th>
<th>Explanatory Notes/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution M&R Stations</td>
<td>Distribution Above grade M&R Station Leaks (> 300 psi)</td>
<td>GRI (1996)</td>
<td>1,684.5 Mscf/yr/station</td>
<td>The fugitive emissions for the component leaks reported in the “Component Leaks” worksheet for Distribution M&R Stations are accounted for as part of the station’s emission factor.</td>
</tr>
<tr>
<td>Distribution M&R Stations</td>
<td>Distribution Above grade M&R Station Leaks (100 - 300 psi)</td>
<td>GRI (1996)</td>
<td>896.5 Mscf/yr/station</td>
<td>The fugitive emissions for the component leaks reported in the “Component Leaks” worksheet for Distribution M&R Stations are accounted for as part of the station’s emission factor.</td>
</tr>
<tr>
<td>Distribution M&R Stations</td>
<td>Distribution Above grade M&R Station Leaks (< 100 psi)</td>
<td>GRI (1996)</td>
<td>40.6 Mscf/yr/station</td>
<td>The fugitive emissions for the component leaks reported in the “Component Leaks” worksheet for Distribution M&R Stations are accounted for as part of the station’s emission factor.</td>
</tr>
<tr>
<td>Distribution M&R Stations</td>
<td>Distribution Below grade M&R Station Leaks (> 300 psi)</td>
<td>GRI (1996)</td>
<td>12.176 Mscf/yr/station</td>
<td>The fugitive emissions for the component leaks reported in the “Component Leaks” worksheet for Distribution M&R Stations are accounted for as part of the station’s emission factor.</td>
</tr>
<tr>
<td>Distribution M&R Stations</td>
<td>Distribution Below grade M&R Station Leaks (100 - 300 psi)</td>
<td>GRI (1996)</td>
<td>1,840 Mscf/yr/station</td>
<td>The fugitive emissions for the component leaks reported in the “Component Leaks” worksheet for Distribution M&R Stations are accounted for as part of the station’s emission factor.</td>
</tr>
<tr>
<td>Distribution M&R Stations</td>
<td>Distribution Below grade M&R Station Leaks (< 100 psi)</td>
<td>GRI (1996)</td>
<td>0.964 Mscf/yr/station</td>
<td>The fugitive emissions for the component leaks reported in the “Component Leaks” worksheet for Distribution M&R Stations are accounted for as part of the station’s emission factor.</td>
</tr>
</tbody>
</table>

Residential Meters

- **GRI (1996)**: 0.184 Mscf/yr/meter

Commercial and Industrial Meters

- **GRI (1996)**: 0.651 Mscf/yr/meter
<table>
<thead>
<tr>
<th>System Categories</th>
<th>Emission Source Categories</th>
<th>Emission Factor Sources</th>
<th>Description [in natural gas volume]</th>
<th>Explanatory Notes/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial, Industrial and Residential Meters</td>
<td>All damages (as defined by PHMSA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vented Emission from MSA</td>
<td>Engineering Estimate</td>
<td>Estimated volume release by MSA and activity type</td>
<td>See Appendix 6 Explanatory Notes / Comments</td>
<td></td>
</tr>
</tbody>
</table>

- Engineering Estimate: Estimated volume release by MSA and activity type
- One of the following three cases per dehydrator facility:
 1. Glycol dehydrator with VRU and thermal oxidizer = 0 Mscf
 2. Glycol dehydrator with no control device = Engineering Estimate
 3. Desiccant dehydrator = 2.23E-03 Mt CH4/MMscf
 (Alternative: Eq. 5 in MRR)

Underground Storage

- Dehydrator Vents - Storage
 - GRI (1996)
 - One of the following three cases per dehydrator facility:
 1. Glycol dehydrator with VRU and thermal oxidizer = 0 Mscf
 2. Glycol dehydrator with no control device = Engineering Estimate
 3. Desiccant dehydrator = 2.23E-03 Mt CH4/MMscf
 (Alternative: Eq. 5 in MRR)

- Storage - piping leakage
 - MRR
 - Leaker EFS -- Storage Station, Gas Service
 (Survey was conducted, and only recorded leaking components use following EFS)
 - Valve = 129.998 Mscf/yr/dev
 - Connector = 49.573 Mscf/yr/dev
 - Open Ended Line = 151.285 Mscf/yr/dev
 - Pressure Relief Valve = 347.422 Mscf/yr/dev
 - Meter = 169.331 Mscf/yr/dev
 - Population EFS -- Storage Wellheads, Gas Service
 (Survey was not conducted, all components use following EFS)
 - Connector = 0.0876 Mscf/yr/dev
 - Valve = 0.876 Mscf/yr/dev
 - Pressure relief Valve = 1.489 Mscf/yr/dev
 - Open Ended Line = 0.2628 Mscf/yr/dev

- Storage - surface casing leakage
 - Engineering Estimate
 - TBD

- Storage - Wellhead leakage
 - Engineering Estimate
 - leak survey + extrapolation

- Storage - Compressor & blowdowns
 - Engineering Estimate
 - Eq. 13 of MRR (piping volume x # of blowdowns)

- Storage - Wellhead Rework blowdown and bring-in
 - Engineering Estimate
 - Eq. 9,10,11,12 of MRR

- Pressure Relief Valves
 - MRR
 - Pressure relief valve = 0.9713 Mscf/day/dev.

- Pneumatic Devices - Pneumatic/Hydraulic Valve Operators, and Turbine Valve Operators
 - MRR
 - Low Continuous Bleed = 0.0316 Mscf/day/dev
 - Intermittent Bleed = 0.0676 Mscf/day/dev
 - High Continuous Bleed = 0.4457 Mscf/day/dev
 - Hydraulic Valve Operator = TBD
 - Turbine Valve Operator = TBD