

Application No.: A.25-12-XXX

Exhibit No.: SDG&E-01

Witness: Dana Golan

PREPARED DIRECT TESTIMONY OF
DANA GOLAN
ON BEHALF OF SAN DIEGO GAS & ELECTRIC COMPANY
CHAPTER 1
(OVERVIEW OF SMART METER 2.0 PROPOSAL)

**BEFORE THE PUBLIC UTILITIES COMMISSION
OF THE STATE OF CALIFORNIA**

December 18, 2025

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	TRANSFORMATIONAL ROLE OF SMART METER TECHNOLOGY	1
III.	APPROACHING OBSOLESCENCE OF SM 1.0	3
IV.	ESCALATING SM 1.0 FAILURES REQUIRES IMMEDIATE ACTION	5
V.	SDG&E'S PROPOSED SM 2.0 SOLUTION	8
VI.	IMPLEMENTATION OF SDG&E'S PROPOSED SM 2.0 SOLUTION	11
VII.	CONCLUSION.....	12
VIII.	WITNESS QUALIFICATIONS	14

**PREPARED DIRECT TESTIMONY OF
DANA GOLAN
CHAPTER 1
(OVERVIEW OF SMART METER 2.0 PROPOSAL)**

I. INTRODUCTION

The purpose of this chapter is to provide an overview of the proposal by San Diego Gas & Electric Company (SDG&E) to modernize its Advanced Metering Infrastructure (AMI) system by replacing its aging smart meter (SM) 1.0 infrastructure and technology with SM 2.0, an updated platform designed to meet current operational challenges, support future advancements, and maintain customer affordability. As discussed below and in the accompanying testimony, uncertainty of access to SM 1.0 devices after 2028 poses significant risk to SDG&E's metering capability. Thus, a solution to address the situation must be in place well before that time. Accordingly, SDG&E requests approval to replace its obsolete SM 1.0 infrastructure with SM 2.0 devices and supporting technology, and requests authority to recover costs of approximately \$825 million between 2024-2031 including direct costs, contingency, overheads, and loaders.¹ The details of SDG&E's SM 2.0 implementation proposal and cost recovery request are addressed in more detail in the prepared direct testimony set forth in Chapters 2-6.

II. TRANSFORMATIONAL ROLE OF SMART METER TECHNOLOGY

Nearly two decades ago, the California Public Utilities Commission (Commission) declared its commitment to “transform[ing] California’s investor-owned utility distribution network into an intelligent, integrated network enabled by modern information and control

¹ While SDG&E will continue to incur costs related to SM 1.0 until it fully transitions to SM 2.0, it will seek recovery of such costs through a separate application.

1 system technologies.”² In D.07-04-043, the Commission authorized SDG&E to install new,
2 AMI-enabled, solid state electric meters and AMI-enabled gas modules capable of measuring
3 energy usage on a time-differentiated basis. The Commission found that deployment of this
4 infrastructure would “improve customer service by providing customer premise endpoint
5 information, assist in gas leak and electric systems outage detection, transform the meter reading
6 process and provide real near-term usage information to customers,” and would also support new
7 technologies such as in-house messaging displays and smart thermostat controls.³

8 SDG&E began implementation of its SM 1.0 program in 2009. This program involved
9 the installation of approximately 900,000 battery operated gas modules and approximately 1.4
10 million electric meters throughout SDG&E's service area and largely concluded in 2011. SM 1.0
11 represented a paradigm shift in electric and gas meter functionality. Implementation of SM 1.0
12 infrastructure enabled new capabilities and benefits, allowing SDG&E to optimize operations by
13 conducting over-the-air meter reading, remote connect and disconnects, and customer
14 notifications. SM 1.0 functionality led to a reduction in manual meter reads, improved billing
15 accuracy, and improved outage detection and response. Additionally, SM 1.0 advanced
16 customer engagement and energy awareness. Indeed, SM 1.0 has delivered broad benefits across
17 stakeholders: regulators and policymakers can design effective customer programs and rate
18 structures; customers can analyze usage to manage costs; third-party retail electric commodity
19 providers can develop innovative solutions; and schools and institutions can leverage data for
20 time-of-use patterns and educational purposes. As discussed in the chapters that follows, these

² Decision (D.) 07-04-043 at 2.

³ *Id.*

1 capabilities and benefits have become the “new normal” – they are integral to utility operations
2 and are a basic expectation of utility customers.

3 In 2005, when SDG&E filed its application seeking approval of SM 1.0, the technology
4 was intentionally designed around the conditions and priorities of the early 2000s. At that time,
5 the electric grid was still largely centralized and unidirectional; customer-side resources were
6 minimal, and the primary objectives were to digitize the billing process, improve meter reads,
7 and enhance basic outage visibility. In other words, the SM 1.0 system delivered what was
8 required for that era. Twenty years later, the operating landscape has fundamentally changed.

9 Rapid growth in distributed energy resources (DERs) such as rooftop solar, behind-the-meter
10 storage, and widespread adoption of electric vehicles (EVs) have shifted the distribution system
11 from predictable and one-way to dynamic and variable. Grid complexity continues to increase
12 across SDG&E’s service territory, and customer devices now interact with the grid in ways that
13 were never contemplated during the design of SM 1.0. Looking ahead to the needs of 2030 and
14 beyond, SDG&E must manage bi-directional power flows, customer energy demand volatility,
15 and greater localized situational awareness of issues on the grid. The technology that was
16 thoughtfully engineered to solve the problems of the past is no longer capable of supporting the
17 grid of the future.

18 **III. APPROACHING OBSOLESCENCE OF SM 1.0**

19 The SM 1.0 technology considered in D.07-04-043 was state of the art at the time it was
20 approved. However, the Commission explicitly acknowledged even then that the SM 1.0
21 infrastructure would eventually require replacement. The Commission assumed a 17-year useful
22 life for SM 1.0,⁴ observing that it would need to be “substantially (if not wholly) replaced after

⁴ D.07-04-043 at Finding of Fact 7.

1 17 years,”⁵ and noting its expectation that the approved AMI system will be “overtaken by a
2 faster, cheaper and higher functioning AMI system that uses a different communications
3 system.”⁶ Applying this 17-year timeline to SDG&E’s SM 1.0 deployment during the 2009-
4 2011 period, end-of-life for SM 1.0 electric meters and gas modules will occur between 2026-
5 2028. Indeed, as discussed in more detail in Chapter 2, SDG&E has already begun to experience
6 significant levels of SM 1.0 device failures. Compounding this problem is the fact that the
7 market has shifted to newer and more effective networking technologies and is now looking
8 ahead to SM 2.0; SDG&E has no guarantee that it will be able to procure replacement SM 1.0
9 devices after 2028 and it faces end-of-support for SM 1.0 by 2035.

10 The deficiencies of SDG&E’s existing SM 1.0 infrastructure are creating significant
11 customer service and operational challenges for SDG&E. Failing SM 1.0 devices lead to
12 increased and persistent customer billing issues, including greater reliance on estimated bills,
13 reduced access to timely usage information, and slower restoration visibility during unplanned
14 outages. Device failures and aging supporting technologies, which are also increasingly prone to
15 failure, place pressure on utility operations, system resiliency, and the service SDG&E provides
16 its 3.7 million customers. Of particular concern is the fact that SM 1.0 device failures are
17 approaching a point that exceeds the ability of the SDG&E’s Customer Field Operations
18 workforce to respond, straining staffing, scheduling, inventory, and logistics. More broadly, the
19 combination of increasing SM 1.0 device failures and approaching network obsolescence
20 threatens the technological foundation of the utility’s AMI infrastructure, which impacts myriad
21 essential utility functions including cybersecurity, data quality, and communication reliability.

⁵ *Id.* at 29.

⁶ *Id.* at 31.

1 Put simply, replacement of SM 1.0 infrastructure is not optional, it is inevitable and must happen
2 in the near-term. Given the lead-time necessary to implement SM 2.0 (discussed in Chapter 4),
3 Commission approval of SDG&E’s SM 2.0 solution is necessary as soon as is feasible.

4 **IV. ESCALATING SM 1.0 FAILURES REQUIRES IMMEDIATE ACTION**

5 California is at the forefront of an energy transformation driven by ambitious climate
6 goals and rapid technological change. Having been a provider of utility service for nearly as
7 long as California has been a state, SDG&E constantly strives to fulfill its obligation to its
8 customers in a way that protects reliability and safety, delivers excellent customer service, and
9 maintains affordability. Indeed, customer service is at the heart of SDG&E’s mission; its
10 objective is to serve customers by making every transaction easy, avoiding surprises, and
11 understanding customers’ issues and concerns. SDG&E was an early adopter of smart meter
12 technology, which dramatically improved operational efficiency and the customer experience.
13 As SM 1.0 technology approaches obsolescence, SDG&E is looking ahead at targeted
14 deployment of new smart meter technology that balances the twin goals of supporting customers’
15 current needs – including protecting customer affordability – and “future-proofing” the metering
16 infrastructure to ensure its ability to meet evolving customer expectations and support
17 California’s policy vision by achieving a more intelligent, responsive, and resilient grid
18 infrastructure.

19 As discussed above and in Chapter 2, SDG&E’s SM 1.0 electric meters and gas modules
20 are failing at a rate that negatively impacts customers and imposes significant operational
21 burdens on SDG&E. Moving to SM 2.0 now is necessary to enable SDG&E to proactively
22 address the substantial and increasing challenges associated with SM 1.0. SDG&E is committed
23 to delivering a solution that protects affordability while maximizing benefits for customers and

1 the grid. SDG&E's SM 2.0 proposal reflects a thoughtful balance between essential
2 infrastructure replacement and strategic investment in capabilities that will support long-term
3 customer value.

4 To promote affordability, SDG&E's SM 2.0 deployment approach seeks to adapt existing
5 SM 1.0 infrastructure to the SM 2.0 environment to the greatest extent feasible. To this end,
6 SDG&E will incorporate certain SM 1.0 systems into the SM 2.0 environment (Persistent
7 systems) and undertake targeted replacement of other SM 1.0 systems (To-Be-Retired systems).
8 SM 1.0 devices and the To-Be-Retired elements of SDG&E's existing SM 1.0 infrastructure
9 must remain in place until the transition to SM 2.0 has been fully completed in order to ensure
10 continuity of service. As is discussed in more detail in Chapter 3, SDG&E's SM 2.0 deployment
11 strategy involves three primary areas of focus:

- 12 • **Replacement of Failing SM 1.0 Electric Meters and Gas Modules with SM
13 2.0 Devices and Implementation of SM 2.0 Foundational Technology:**
14 SDG&E will implement foundational technology that enables basic SM 2.0
15 capabilities and that supports replacement of SM 1.0 electric meters and gas
16 modules with SM 2.0 devices (Foundational Technology).
- 17 • **Implementation of SM 2.0 “NextGen” Technology to Support Enhanced
18 NextGen Capabilities:** NextGen capabilities are a suite of advanced metering,
19 analytics, and grid modernization features designed to improve operational
20 efficiency and reliability, and improve the customer experience. These
21 capabilities are incremental to basic SM 2.0 capabilities. SDG&E will implement
22 NextGen technology necessary to enable the select NextGen capabilities
23 identified in Chapter 3 (NextGen Technology).

- **Maintenance of Legacy SM 1.0 Technology, Including Legacy SM 1.0 Devices, During the Transitional to SM 2.0:** As noted above, elements of SDG&E’s existing SM 1.0 infrastructure must remain in place until the transition to SM 2.0 has been completed. The information regarding SM 1.0 provided in the chapters that follow is intended to assist the Commission in understanding the mechanics of the transition from SM 1.0 to SM 2.0.⁷ SDG&E will seek to minimize the length of this transition period and limit further investment in SM 1.0 technology.

9 Near-term transition to SM 2.0 is necessary to maintain existing SM 1.0 levels of
10 operational functionality and customer service. Beyond immediate operational improvements,
11 SM 2.0 electric meters offer a scalable platform for future enhancements. By incorporating
12 adaptability into the system design, SDG&E is well-positioned to integrate new technologies in
13 the future and to support evolving customer-facing applications. This approach supports
14 SDG&E's commitment to providing flexible, resilient, and innovative services that keep pace
15 with changing market expectations and regulatory requirements. SM 2.0 devices offer
16 significant enhancements such as the ability to process and transmit data at much higher
17 frequencies, enabling granular monitoring of electricity usage and grid performance. Unlike
18 earlier models that provide only periodic readings, SM 2.0 electric meters can record thousands
19 of measurements per second. This capability facilitates advanced analytics, including customer
20 insights, which helps SDG&E better understand and manage demand across the grid. SM 2.0

⁷ SDG&E is not requesting recovery of the costs associated with maintaining operability of the SM 1.0 infrastructure in the instant application. It will request recovery of costs related to maintaining SM 1.0 in a separate application.

1 gas modules, likewise, offer superior functionality that will increase operational effectiveness
2 and improve the customer experience.

3 **SDG&E'S PROPOSED SM 2.0 SOLUTION**

4 As discussed in Chapter 3, after the Commission's decision in SDG&E's most recent
5 general rate case (GRC) proceeding directing SDG&E to file a separate application for approval
6 of SM 2.0 implementation,⁸ SDG&E sought to refresh its Smart Meter 2.0 planning by
7 conducting an updated evaluation of the most critical capabilities required to meet customer
8 expectations, existing and future operational needs, and emerging regulatory expectations.

9 SDG&E retained Ernst & Young to work with key internal stakeholder groups to identify SM 2.0
10 use cases that not only resolve the current SM 1.0 challenges but also enable new functionalities,
11 optimize operations, and achieve a flexible platform for the future. After mapping the identified
12 use cases, SDG&E assessed the feasibility and complexity of implementing each through a
13 Business Capability Maturity Assessment. SDG&E then evaluated each proposed capability
14 based on strategic alignment, potential impact, and implementation complexity. The results of
15 this process formed the foundation for SDG&E's 2025 SM 2.0 procurement strategy.

16 SDG&E conducted both a comprehensive Request for Proposals (RFP) process to solicit
17 bids from established AMI vendors for replacement of electric meters and gas modules and
18 supporting technology, and a Request for Quotation (RFQ) process to request information from
19 its incumbent vendor regarding the feasibility of extending the life of SDG&E's current SM 1.0
20 solution. SDG&E issued the RFP in March 2025, soliciting bids from the leading five smart
21 meter vendors (including SDG&E's incumbent vendor). Two vendors responded to the RFP

⁸ See D.24-12-074 at Ordering Paragraph 51.

1 with comprehensive proposed solutions. SDG&E's incumbent vendor did not offer a bid into the
2 solicitation.

3 The RFP followed a structured, multi-phased evaluation process to ensure thorough
4 review and vetting of all proposals by the evaluation team, which included internal subject
5 matter experts (SMEs) across electric and gas engineering, IT, operations, customer experience,
6 meter shop, network infrastructure, and supply management functions. The evaluation team
7 applied defined criteria related to technical performance, functional requirements, delivery
8 requirements, bidder sustainability, commercial terms, future use case opportunities, supply
9 chain, and other criteria. The evaluation team also considered the extent to which each
10 proposal's SM 2.0 devices and supporting technology were designed for long-term adaptability
11 and would support NextGen capabilities. SDG&E thoroughly evaluated each RFP bid with the
12 objective of identifying the solution that would offer proven and robust technologies capable of
13 meeting today's needs, while also demonstrating the extensibility, processing power, and feature
14 depth necessary to meet future system demands. SDG&E's evaluation separately considered
15 base features (*i.e.*, key functions and capabilities essential to present day operation of the smart
16 meter system) and NextGen capabilities, which offer valuable enhancements that can be
17 implemented at any time.

18 As detailed in Chapter 3, one vendor solution was the clear winner in terms of both cost
19 and functionality. This solution not only satisfied the full set of evaluation criteria related to SM
20 2.0 base features, but also offered a suite of mature, robust NextGen capabilities available to be
21 deployed immediately or in the future. It directly addressed the limitations of SDG&E's current
22 SM 1.0 system while also aligning with future regulatory and operational needs, delivering more
23 functionality at a lower overall cost. The total estimated loaded cost of SDG&E's proposed SM

1 2.0 solution is \$825M, which covers immediate deployment of base functions and selected
2 NextGen capabilities.

3 SDG&E's RFQ requesting information from its incumbent vendor, issued in April 2025,
4 revealed material risk associated with the approach of seeking to extend the life of SDG&E's
5 current SM 1.0 solution. SDG&E's Master Services Agreement (MSA) with the incumbent
6 meter vendor expires in 2028. In the RFQ, SDG&E sought to assess the feasibility of
7 maintaining its SM 1.0 infrastructure over the next two decades through like-for-like SM 1.0
8 device replacements and technology upgrades.

9 The incumbent vendor has indicated that due to component obsolescence and
10 technological advancements, the SM 1.0 platform specified in the current MSA is being
11 transitioned to the supplier's next-generation solution. As a result, in the RFQ response, the
12 incumbent vendor committed to working with SDG&E but did not guarantee sufficient supply of
13 SM 1.0 devices between 2028-2035. Additionally, the incumbent vendor indicated that it could
14 not secure guarantees from its suppliers (specific to RFLAN) to support SM 1.0 product
15 availability or support beyond 2035. Based on these factors, the incumbent vendor advised
16 SDG&E to develop a transition plan to ensure continuity and mitigate risk.

17 To confirm that its proposed SM 2.0 replacement approach is the optimal solution,
18 SDG&E evaluated alternative options such as delaying SM 2.0 implementation to 2031 or 2032
19 and continuing to replace failing SM 1.0 electric meters and gas modules with like-for-like SM
20 1.0 devices in the meantime. As discussed in Chapter 3, the approach of delaying SM 2.0
21 implementation to 2031 or 2032 is problematic for several reasons, including significantly
22 increased cost (a delay to 2031 would raise costs by an estimated \$71.3 million, while a delay to
23 2032 would increase costs by an estimated \$86.9 million), potential unavailability of replacement

1 devices, operational burdens, negative impacts on customer experience, and potential network
2 vulnerabilities.

3 As a practical matter, uncertainty of access to hardware after 2028 poses significant risk
4 to SDG&E's metering capability. Thus, a solution to address the situation must be in place well
5 before that time. If a large number of installed devices were to fail, as is predicted in the very
6 near term (see Chapter 2, Figure 2-3), SDG&E would lose connectivity with electric meters and
7 gas modules, making it impossible to generate accurate timely bills, execute remote
8 connect/disconnect orders, while also complicating the customer's ability to access usage data.
9 Equally as concerning, continued reliance on the SM 1.0 platform, which may soon have limited
10 or no manufacturer support, increases SDG&E's exposure to cybersecurity risks and would
11 create other operational challenges. Thus, delaying SM 2.0 implementation and prolonging
12 investment in obsolete technology will serve only to harm customers and degrade SDG&E's
13 operational capabilities.

14 **VI. IMPLEMENTATION OF SDG&E'S PROPOSED SM 2.0 SOLUTION**

15 SDG&E proposes to implement SM 2.0 over a six-year period beginning with program
16 mobilization, which includes vendor selection and contracting (both to occur in 2026), and
17 establishing governance and program management frameworks. Following the mobilization
18 phase, the focus will shift to development and implementation of Foundational Technology
19 necessary to enable base SM 2.0 functions, and then to deployment of SM 2.0 electric meters and
20 gas modules across the service territory in 2027. After implementation of SM 2.0 Foundational
21 Technology and installation of SM 2.0 electric meters and gas modules, SDG&E will implement
22 key Next Gen capabilities (discussed in Chapter 3) to enhance customer engagement and
23 operations. The final stage of the SM 2.0 implementation process will involve retirement of

1 legacy SM 1.0 technologies and a comprehensive program close-out, ensuring a seamless
2 transition to the upgraded platform. This timeline is discussed in more detail in Chapter 4. It is
3 important to note that this timeline assumes adoption of a Commission decision approving
4 SDG&E's application by the end of 2026.

5 SDG&E's SM 2.0 implementation plan also addresses stakeholder engagement and
6 education. SDG&E is committed to building a proactive, inclusive, and transparent Marketing,
7 Education and Outreach (ME&O) strategy for the transition to SM 2.0 that meets the evolving
8 needs and expectations of its diverse customer base. As discussed in Chapter 4, SDG&E has
9 designed a comprehensive ME&O plan that establishes a clear timeline, formal communication
10 channels, and effective coordination with stakeholders. The ME&O plan emphasizes
11 transparency in messaging, inclusivity in outreach, and customer empowerment through
12 education and self-service resources to ensure that customers are able to fully leverage the
13 benefits of the new SM 2.0 technology.

14 **VII. CONCLUSION**

15 Approval of SDG&E's SM 2.0 implementation proposal and timeline is essential to
16 address the material risk presented by the increasing failures of SM 1.0 devices and the
17 impending obsolescence of the SM 1.0 platform. SDG&E's SM 2.0 proposal is the result of a
18 comprehensive RFP process and evaluation of multiple proposed solutions; it also takes into
19 account information provided by SDG&E's incumbent vendor through the RFQ process.
20 SDG&E's SM 2.0 strategy will preserve the benefits of SM 1.0, while meeting evolving
21 operational and customer demands in a manner that is cost-effective and aligned with
22 affordability goals. Delaying implementation of SM 2.0 would result in a reactive, high-cost
23 replacement effort driven by widespread failures, disrupting operations and burdening customers

1 with avoidable expenses and service interruptions. Approval of SDG&E's implementation of
2 SM 2.0 will benefit customers and improve operational efficiencies. Accordingly, the
3 Commission should expeditiously approve SDG&E's request to implement SM 2.0.

4 This concludes my prepared direct testimony.

1 **VIII. WITNESS QUALIFICATIONS**

2 My name is Dana Golan and my business address is 8330 Century Park Ct., San Diego,
3 California 92123. I am currently the chief customer officer for San Diego Gas & Electric
4 Company (SDG&E) and the executive sponsor for the company's Smart Meter 2.0 Project. I
5 also oversee all customer-related activities including customer services, digital channel
6 management and strategy, field and meter operations, customer programs, business services, and
7 revenue cycle activities. For the past 21 years, I have worked for SDG&E or its parent company,
8 Sempra, in a variety of managerial and executive roles. I have a Bachelor of Arts in
9 Communications Studies from the University of California Los Angeles and a Master of
10 Business Administration from Pepperdine University.

11 I have previously testified before the California Public Utilities Commission.