Application No. A.14-04-___
Exhibit No.: _________
Witness: Lee Krevat

Application of SAN DIEGO GAS & ELECTRIC COMPANY (U 902 E) For Approval of its Electric Vehicle-Grid Integration Pilot Program.) Application No. 14-04-___ (Filed April 11, 2014)

PREPARED DIRECT TESTIMONY OF
LEE KREVAT
CHAPTER 1
ON BEHALF OF SAN DIEGO GAS & ELECTRIC COMPANY

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA

April 11, 2014

SDG&E
TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. VGI PILOT PROGRAM OBJECTIVES AND SUPPORTING POLICY 3
 A. Zero Emission Vehicle Action Plan and Pledge .. 5
 B. Renewable Energy Resources .. 5
 C. Energy Storage Rulemaking .. 9
 D. Improving Grid Utilization ... 10
 1. Informative Study of Customer Preferences .. 11
 2. Improved Grid Performance, Renewable Energy Consumption and EV Energy Storage Utilization .. 12
 3. Targeting Customer Segments with High VGI Potential 13
 4. Implementation Approach Works with EV Service Providers 13
 E. Commission Decision 12-12-033 Adopting Cap-and-Trade GHG Allowance Revenue Allocation Methodology ... 14

III. CONCLUSION ... 14

IV. STATEMENT OF QUALIFICATIONS ... 15

APPENDIX
PREPARED DIRECT TESTIMONY OF

LEE KREVAT

CHAPTER 1

I. INTRODUCTION

San Diego Gas & Electric Company (SDG&E) proposes in this Application a Vehicle-Grid Integration (VGI) Pilot Program to establish grid-beneficial electric vehicle (EV) charging. SDG&E proposes introducing EV charging infrastructure that uses an innovative time-variant rate to promote efficient grid usage and charging. The proposed VGI Pilot Program will promote EV driver “range confidence,” leading to increased adoption of EVs, increased demand for EV charging, increased zero emission miles driven per EV (resulting in less greenhouse gas (GHG)), and increased EV cost-saving opportunity through alternative fuel choice availability and a time-variant rate. SDG&E expects the VGI Pilot Program to positively impact the growth of the EV charging market as well as to increase the adoption of EVs. Increased adoption of environmentally beneficial EVs is strongly supported in state law, Commission policy, and the Governor’s Zero Emission Vehicle (ZEV) Action Plan. The VGI Pilot Program is thus consistent with and supportive of Commission policy and state law, which encourages utilities to propose efforts that
increase the environmentally beneficial use of electricity as transportation fuel and to optimize use of the electrical system consistent with California smart grid policy goals.

The VGI Pilot Program is designed to examine untapped EV benefit potential. The VGI Pilot Program will test and measure the flexibility of EV charging loads and the degree to which the efficient integration of EV loads can yield cost savings by avoiding future utility infrastructure additions. The VGI Pilot Program proposed here will identify the benefits to all customers by demonstrating the avoidance of potential negative impacts on the grid and any unnecessary costs due to EV charging.

Ratepayer interests are served by increased environmental benefits, GHG reductions, and increased alternative fuel use; thus the VGI Pilot Program’s support of EV growth in a sustainable, grid-friendly manner serves ratepayer interests. Data from the VGI Pilot Program and grid-friendly EV charging is intended to help inform VGI policy development, create and expand EV charging solutions and benefit the EV charging market and SDG&E customers. The VGI Pilot Program will help position the market for future vehicle-to-grid technology applications per the February 2014 California Independent System Operator (CAISO) VGI Roadmap and the Energy Division’s October 2013 VGI White Paper. And, as explained more fully in Chapter 2, the VGI Pilot Program is designed to provide

1 California Public Utilities Code (P.U. Code) Section 740.3 directs the Commission to implement policies designed to promote the development of infrastructure needed to facilitate the use of electric power and natural gas to fuel low emission vehicles (LEVs). P.U. Code § 740.8 expanded the definition of ratepayer interest in Section 740.3 to include health and environmental benefits, GHG reductions, and increasing alternative fuel use when evaluating LEV utility proposals, such as the VGI program.

2 P.U. Code § 8360 states several smart grid policy goals consistent with the VGI Pilot Program proposal, including “dynamic optimization of grid operations and resources…,” among others.

3 As defined by P.U. Code § 740.8.

4 See P.U. Code §§ 740.3 and 740.8.

6 Available at http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M080/K775/80775679.pdf.
increased opportunity and business growth for those industries that provide support services
to EV customers.

Under the VGI Pilot Program, to the greatest extent possible, SDG&E will contract
with third parties to build, install, operate and maintain EV charging facilities under a
service level agreement, to SDG&E’s VGI specifications, and under SDG&E’s overall
supervision. SDG&E will target the VGI offering to two critical customer segments where
there is very low deployment of EV charging facilities and where cars are parked the
longest, and which have the greatest potential to demonstrate the benefits of VGI including
increasing EV adoption and increasing zero emission miles driven per EV: workplace and
multi-unit dwelling customers.

My testimony (Chapter 1) discusses the policy foundation for the proposed VGI Pilot
Program. The testimony of Randy Schimka, Chapter 2, provides a summary of the VGI
Pilot Program, its implementation costs and management. Cynthia Fang’s testimony in
Chapter 3 summarizes the proposed VGI Pilot Program rate and related electric rate policy
relevant to the objectives for the VGI Pilot Program proposal. Chapter 4, the testimony of
Jonathan B. Atun, summarizes revenue requirements, and Chapter 5, the testimony of
Norma G. Jasso, describes cost recovery. Chapter 6, the testimony of J.C. Martin,
summarizes the proposed VGI Pilot Program benefits and cost-effectiveness.

II. VGI PILOT PROGRAM OBJECTIVES AND SUPPORTING POLICY

California policy strongly supports establishing vehicle-grid integration technologies
for EV charging, although the pricing plans that have been made available through EV
charging service providers have not yet shown pricing variability relevant to variant grid
conditions and/or energy prices. The policy climate in California is ripe for SDG&E’s VGI Pilot Program proposal, as several recent developments demonstrate; for example:

- Governor Brown’s ZEV Action Plan, proposing actions to expand the use of zero-emission vehicles to 10 percent of new public and private vehicle purchases in California and neighboring states by 2016 and invest in necessary infrastructure to enable low-carbon electric transportation;\(^7\)

- SDG&E’s incorporation of significant levels of renewable energy resources in its procurement portfolio, per the Renewable Portfolio Standard (RPS),\(^8\) creates an opportunity to integrate these resources with EV charging;

- Commission issuance of the Energy Storage Order Instituting Rulemaking (OIR) decision (D.13-10-040),\(^9\) the Alternative Fuel Vehicle (AFV) OIR,\(^10\) and Energy Division Staff’s VGI White Paper;\(^11\)

- The California legislature’s enactment of Senate Bill (SB) 17, which codifies state policy to encourage “smart” grid modernization and usage;\(^12\)

- CPUC’s Decision 12-12-033 Adopting Cap-and-Trade GHG Allowance Revenue Allocation Methodology and the California Air Resources Board’s Cap-and-Trade Auction Proceeds Investment Plan.

These are just a few examples of California’s recent and significant progress toward decreased carbon emissions and increased EV growth. The VGI Pilot Program will provide

\(^8\) See Decision (D.) 11-12-020, implementing the new RPS procurement quantities established in P.U. Code § 399.15(b).
\(^9\) D.13-10-040, http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M079/K171/79171502.PDF, R.10-12-007, http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M078/K912/78912194.PDF.
\(^11\) Available at http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M080/K775/80775679.pdf.
innovative support toward achieving California’s goals and continuing this growth, as
discussed below.

A. Zero Emission Vehicle Action Plan and Pledge

As reported in the ZEV Action Plan, Governor Brown has set ambitious ZEV
adoption goals for the state of California, issuing an Executive Order for state government to
help significantly expand the market for ZEVs in California. The Executive Order
established several action items and milestones and set a goal of 1.5 million ZEVs in
California by the year 2025, building upon significant work already undertaken by
government agencies.

On October 28, 2013, Governor Brown announced that California signed a regional
agreement with the Governors of Oregon and Washington and the British Columbia Premier
to strategically align policies to reduce GHGs and promote clean energy. Among other key
actions cited in the pact, the most notable is to take steps to expand the use of ZEVs, aiming
for 10 percent of new public and private fleet vehicle purchases by 2016.

Governor Brown’s ZEV Action Plan underscores the important role of EV adoption
in advancing California’s climate change objectives, and the urgency for all stakeholders to
work collaboratively to dramatically increase the adoption of ZEVs. The VGI Pilot Program
is intended to help achieve these state policy objectives in a timely and innovative manner.

B. Renewable Energy Resources

Renewable technologies including solar and wind energy are expected to have
significant impacts on California electricity markets in the near future, in part because of

Leaders to Combat Climate Change.
California’s push for a low carbon economy and a 33 percent RPS, with a preference for in-state renewables. As distributed and central station renewable generation (particularly solar) grows, daily energy price profiles will change and the net demand (i.e., the total demand minus renewable power) will shift to later in the day. Increased solar renewable generation will produce increasingly more energy during the afternoon hours. When renewable resources produce energy it will be accepted by the grid regardless of price, because of RPS requirements; hence, renewable production is “must-take” at the time it is produced.

SDG&E’s VGI Pilot Program is designed to improve system efficiency by encouraging customers through price signals to charge vehicles when market prices are low, thereby avoiding charging during times of system demand peaks.

SDG&E is not alone in recognizing the significant changes on the horizon. Table LK-1 shows the large increase in renewable generation that California’s Electricity Analysis Office has projected for the next 10 years, with over 70 percent being in-state renewable generation.16

15 The benefits of using electricity as an alternative fuel will also increase as the percentage of renewable energy in the resource portfolio increases, especially if grid integrated charging is in place.

Table LK-1: Significant Increase in Renewables

<table>
<thead>
<tr>
<th>Technology</th>
<th>Projected Annual Energy (GWh)</th>
<th>Nameplate Capacity (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In-State</td>
<td>Out-of-State</td>
</tr>
<tr>
<td>Solar</td>
<td>18,843</td>
<td>1,633</td>
</tr>
<tr>
<td>Wind</td>
<td>4,481</td>
<td>1,496</td>
</tr>
<tr>
<td>Geothermal</td>
<td>3,766</td>
<td>1,200</td>
</tr>
<tr>
<td>Biofuels</td>
<td>1,377</td>
<td>0</td>
</tr>
<tr>
<td>Small Hydro</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>28,468</td>
<td>4,328</td>
</tr>
</tbody>
</table>

Chart LK-1 shows how CAISO has projected the impact of solar on the net load shape to be substantial over the next few years, requiring significant ramping resources in the afternoon to meet peak net demands in the evening during days with low peak loads.17

The addition of must-take renewable energy is also expected to impact electricity prices, as shown in Chart LK-2. Marginal energy costs will become lower midday and higher in the early evening hours.
The purpose of presenting these charts is to show that California is expecting a change in circumstances in the not too distant future as a high penetration of variable renewable generation occurs. SDG&E’s VGI Pilot Program could improve system efficiency by allowing and encouraging customers to charge vehicles when solar energy is plentiful and prices are low, thereby avoiding charging at system peaks.

C. Energy Storage Rulemaking

The VGI Pilot Program can test and develop data concerning technology that efficiently integrates EV charging with the grid and explores EV energy storage capabilities. On October 17, 2013, the CPUC unanimously voted to establish a target of 1,325 megawatts (MW) of energy storage capacity for procurement by the investor-owned utilities (IOUs) by 2020, with installations under the program required no later than 2024. Based on the

19 D.13-10-040.
results of the VGI Pilot Program, VGI-related EV storage may be evaluated in the future, to
determine whether to treat it as a form of energy storage under the CPUC’s energy storage
capacity mandate.

In the meantime, platforms such as SDG&E’s VGI Pilot Program can help to better
determine the potential value of the inherent EV energy storage properties. For example, the
energy stored in an EV battery during one time of day, perhaps at one location, is efficiently
“dispatched” directly to the vehicle for mobility in meeting travel needs at another time of
day. D.13-10-040’s Concurrence of Commissioners Ferron and Peevey on Item 29
encouraged the utilities to evaluate various options and solutions (e.g., customer-sited
storage), with the objective to use this decision to help transform the energy storage market.

Furthermore, the Energy Storage Procurement Framework and Design Programs decision
adopted in D.13-10-040 states the following related to procurement eligibility: “All energy
storage resources as defined by Pub. Util. Code § 2835(a), except for pumped storage
resources over 50 MW, are eligible to bid into the energy storage solicitations. Energy
storage that could be obtained from plug-in electric vehicles and programs/systems that
utilize electric vehicles for grid services (Vehicle to Grid), could count for procurement
targets.”20 In light of these interests, it would be valuable to innovate, test and develop data
concerning technology that efficiently integrates EV charging with the grid and better
explores the energy storage capabilities within EVs, to the benefit of all customers.

D. Improving Grid Utilization

The VGI Pilot Program will test customer response to grid-integrated EV charging
by implementing an hourly time-variant pricing plan that reflects the expected changes in

20 D.13-10-040, p. 5.
energy prices and grid conditions throughout the day with enabling technology for workplace and multi-unit dwelling customers. The hourly time-variant pricing will be communicated to the customer in a simple, convenient and easy to understand way, on a day-ahead basis. This time-variant pricing is designed to encourage EV drivers to meet their charging needs while simultaneously enhancing grid efficiency by adding load at times of least cost. The proposed VGI charging management functions will be designed to encourage the EV driver to avoid charging during peak grid capacity conditions and to charge during periods of plentiful supply. This is described further in Mr. Schimka’s and Ms. Fang’s testimony (Chapters 2 and 3).

The VGI Pilot Program proposal is responsive to California policy to take affirmative action toward improved utilization of utility grid assets and energy resources and improving the market penetration of multi-unit dwelling and workplace charging,21 thereby increasing the benefits to all ratepayers through vehicle-grid integrated EV charging.

Through the VGI Pilot Program, SDG&E will examine the following critical issues to efficient, grid-beneficial EV charging:

1. **Informative Study of Customer Preferences**

 Given the unique and flexible demand characteristics of EV charging (e.g., by location, rate of charge, duration of charge) it will be informative to see whether hourly-variant pricing influences charging decisions, with the aid of enabling technology. This proposal builds off the results of SDG&E’s current PEV Pricing and Technology Study, the results of which indicate that pricing and enabling technology play a strong role in

21 *See*, for example, P.U. Code § 8360 and the Commission’s objectives for the AFV OIR, R.13-11-007.
influencing charging time decisions. Technology innovation and pricing options need to be explored in terms of the corresponding customer or behavioral response. SDG&E’s VGI proposal offers customers a choice in the way of easy-to-use pricing options designed to provide value to the EV customer that takes advantage of the load flexibility of EV charging. Data from the VGI Pilot will help inform Commission policy regarding:

- the relationship between pricing and charging behavior in the workplace and at home (e.g., at what price will customers charge at work when compared to applicable rates at home?);
- whether the pricing and availability of charging facilities increase zero emission miles driven (i.e., EV miles traveled) per EV customer, resulting in less GHG; and
- whether utility management of EV charging away from times of system or distribution peak can minimize or eliminate upward pressure on grid capacity and dispatch EV load to take best advantage of available energy supply.

2. **Improved Grid Performance, Renewable Energy Consumption and EV Energy Storage Utilization**

This proposal enables SDG&E and other stakeholders to determine how effectively grid-integrated charging enables plug-in electric vehicle batteries to provide the benefits of energy storage in grid support. As explained in the AFV OIR, November 14, 2013, AFV OIR, R.13-11-007, pp. 15-16.

22 SDG&E is in its final year of PEV Pricing and Technology study to test how EV charging time decisions respond to varying price ratios between time-of-use periods, approved by the CPUC June 2010, Advice Letter 2157-E. The results of the study can be found at https://www.sdge.com/sites/default/files/documents/1681437983/SDGE%20EV%20Pricing%20Tech%20Study.pdf?nid=10666

23 AFV OIR, R.13-11-007, pp. 15-16.
• reducing system ramping needs by building loads during the lowest demand periods;
• providing load to absorb low cost energy supply; and
• avoiding local distribution impacts by minimizing load when local distribution system is near capacity.

To this end, the VGI Pilot Program proposal introduces a cost-effectiveness methodology applicable to VGI solutions, particularly those incorporating pricing with managed charging, where the benefits stated above are quantified and evaluated against the costs to achieve these benefits. This is discussed in greater detail in J.C. Martin’s testimony (Chapter 6).

3. Targeting Customer Segments with High VGI Potential

The VGI Pilot Program targets critical customer segments with high VGI potential and where there is a very low deployment of EV charging facilities: workplace and multi-unit dwelling customers. Strategically, both of these customer segments offer around-the-clock opportunity for grid-integrated charging. The workplace setting offers the opportunity to charge during times when renewable energy is at a high level of output versus the load thus lowering market clearing prices. The multi-unit dwelling customers are expected to respond similarly to and enjoy the same benefits as single family customers, who take advantage of super-off peak energy rates from midnight to 5 AM, when both capacity and low-cost energy are plentiful.

4. Implementation Approach Works with EV Service Providers

Under the VGI Pilot Program, to the greatest extent possible, SDG&E will contract with third parties to build, install, operate and maintain EV charging facilities under a service level agreement, to SDG&E’s VGI specifications, and under SDG&E’s overall
supervision. It is expected that this form of competitive bidding will encourage innovation at least cost and improve customer experience. It is also expected that such an approach enables SDG&E to expand Diversified Business Enterprise (DBE) support into the third-party EV service provider domain.

E. **Commission Decision 12-12-033 Adopting Cap-and-Trade GHG Allowance Revenue Allocation Methodology**

In addition to approval of this proposed project, SDG&E also requests a determination that this project is eligible to receive funding from the revenues generated by the sale of cap-and-trade allowances consistent with the P.U. Code § 748.5(c). In order to receive such a designation, D.12-12-033 states the Commission must determine that the proposed project will (1) have a goal of reducing GHGs (Conclusion of Law 46) and (2) be administered by the electrical corporation and is not otherwise funded by another funding source (Conclusion of Law 7). In addition to the VGI Pilot Program GHG reduction potential, charging infrastructure is one of the project types in the California Air Resources Board’s Investment Plan for GHG reductions. As stated in the application, the project would be administered by SDG&E and is currently not funded.

III. CONCLUSION

This concludes my prepared direct testimony.

24 D.12-12-033, p. 198, Conclusion of Law 46 “Should the Commission decide at a later date to direct GHG revenues toward energy efficiency or clean energy programs or projects, such projects should have as a stated and measurable goal a reduction in GHG emissions.”

25 D.12-12-033, p. 191 Conclusion of Law 7 “Section 748.5(c) states that the Commission may allow investor-owned utilities to use up to 15% of the revenues, including any accrued interest, received by an electrical corporation as a result of the direct allocation of GHG allowances to electrical distribution utilities pursuant to subdivision (b) of Section 95890 of Title 17 of the California Code of Regulations, for clean energy and energy efficiency projects established pursuant to statute that are administered by the electrical corporation and that are not otherwise funded by another funding source.”

IV. STATEMENT OF QUALIFICATIONS

My name is Lee S. Krevat. My business address is 9305 Lightwave Avenue, San Diego, California 92123. I am employed by SDG&E as Director for SDG&E’s Smart Grid and Clean Transportation. My present responsibilities are to ensure a coordinated strategy, direction and policy across all Smart Grid domains, specifically, Transmission, Distribution, Customer Services and Information Technology. I am also responsible for SDG&E’s strategy, direction, policy, and implementation for our clean transportation efforts.

I have been employed by Sempra Energy and/or SDG&E since 1998 and have held various director-level positions including Infrastructure Engineering and Operations, Architecture, Business Partnership, Strategy, Project Delivery and Smart Grid. I received a Bachelor of Science Degree in Applied Mathematics/Computer Science with university honors from Carnegie Mellon University in 1984. I have previously testified before this Commission.

I have been an all-electric vehicle owner since March 2011. I celebrated the purchase of my family’s third all-electric vehicle three years later, in March 2014.
APPENDIX

GLOSSARY OF ACRONYMS AND DEFINED TERMS

<table>
<thead>
<tr>
<th>ACRONYM</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFV</td>
<td>Alternative fueled vehicle</td>
</tr>
<tr>
<td>CAISO</td>
<td>California Independent System Operator</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>EV</td>
<td>Electric vehicle</td>
</tr>
<tr>
<td>IEPR</td>
<td>Integrated Energy Policy Report</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gases</td>
</tr>
<tr>
<td>LEVs</td>
<td>Low emission vehicles</td>
</tr>
<tr>
<td>OIR</td>
<td>Order Instituting Rulemaking</td>
</tr>
<tr>
<td>PEVs</td>
<td>Plug-in electric vehicles</td>
</tr>
<tr>
<td>RPS</td>
<td>Renewable portfolio standard</td>
</tr>
<tr>
<td>TOU</td>
<td>Time of use</td>
</tr>
<tr>
<td>VGI</td>
<td>Vehicle-Grid Integration</td>
</tr>
<tr>
<td>ZEV</td>
<td>Zero emission vehicle</td>
</tr>
</tbody>
</table>