
Exhibit No.:
Application: A.22-09-015
Witness: Marjorie Schmidt-Pines
Chapter: 9a

PREPARED DIRECT TESTIMONY OF MARJORIE SCHMIDT-PINES ON BEHALF OF SOUTHERN CALIFORNIA GAS COMPANY

 $(COST\ ALLOCATION\ AND\ LONG\ RUN\ MARGINAL\ COST\ STUDY)$

September 30, 2022 (Errata redlined dated July 24, 2023)

TABLE OF CONTENTS

		Pag	<u>e</u>
I.	PUR	POSE	1
II.	OVE	RVIEW OF COST ALLOCATION	1
III.	COS	Γ ALLOCATION PRINCIPLES	2
IV.	COS	Γ ALLOCATION METHOD PROPOSED FOR SOCALGAS	3
V.	CUS'	TOMER-RELATED MARGINAL UNIT COST	5
	A.	Marginal Capital Cost	5
	D	MSA Costs Service Line Costs	6
	B.	Marginal Direct O&M Costs	
		 Customer Services O&M Costs Customer Accounts O&M Costs Meters and Regulators O&M Costs 	8 9
		4. Service Lines O&M Costs	
	C.	Calculation of Customer-Related Marginal Unit Cost and Marginal Cost Revenue	
VI.		IUM AND HIGH PRESSURE DISTRIBUTION-RELATED MARGINAL COSTS1	2
	A.	Medium Pressure Distribution Marginal Unit Cost and Marginal Cost Revenue	2
		Marginal Capital Cost	4
	B.	High Pressure Distribution Marginal Unit Cost and Marginal Cost Revenue	
VII.	MAR	GINAL COST ESTIMATION FACTORS1	7
	A.	Real Economic Carrying Charge (RECC) Factors1	7
	B.	O&M Loaders1	
		1. A&G Loading Factor 1 2. General Plant Loading Factor 1 3. M&S Loading Factor 2	9
VIII.	RESU	JLTS OF THE COST ALLOCATION STUDIES2	
IX.		PARISON OF PROPOSED COST ALLOCATION TO CURRENT COST DCATION2	8
X.	OUA	LIFICATIONS	0

CHAPTER 9

PREPARED DIRECT TESTIMONY OF MARJORIE SCHMIDT-PINES (COST ALLOCATION AND LONG RUN MARGINAL COST STUDY - SOCALGAS)

I. PURPOSE

The purpose of my testimony is to present the allocation of the authorized revenue requirement to customer classes for Southern California Gas Company (SoCalGas). My testimony ultimately proposes Customer-related, Medium Pressure Distribution-related, and High Pressure Distribution-related marginal unit costs and marginal cost revenue, using the Long Run Marginal Cost (LRMC) method. The LRMC method refers to the incremental cost to serve one additional unit in the long run; such a unit cost is called the marginal unit cost.

I also present total allocation of SoCalGas's authorized base margin revenue requirement, which combines the results of my LRMC analysis for Customer-related, Medium and High Pressure Distribution -related costs, and which incorporates inputs from witness Frank Seres (Chapter 8) on Transmission-related and Storage-related costs, as well as from witness Sharim Michael Foster Chaudhury (Chapter 13) on the Natural Gas Vehicle (NGV) compression adder costs.

II. OVERVIEW OF COST ALLOCATION

Cost allocation refers to the process of determining the cost of each utility function and allocating these functional costs to the customer classes. My testimony results in the allocation of Base Margin¹ revenue requirements across customer classes. This cost allocation is conducted

SoCalGas's Base Margin is authorized in a General Rate Case (GRC). Pipeline Safety Enhancement Plan (PSEP) cost components of the Base Margin are functionally allocated to High Pressure Distribution and Transmission functions per D.14-06-007 and D.16-12-063. AB32 Administrative fees (CARB fee) are allocated on an Equal Cents Per Therm (ECPT) basis.

by first allocating the authorized revenue requirement to the functions performed by SoCalGas in 1 order to provide natural gas service. These functions are: 2 (i) Customer-related (provisions for service lines, regulators, meters, 3 4 call centers, service representatives); (ii) Medium Pressure Distribution System; 5 High Pressure Distribution System; (iii) 6 Local Transmission System; (iv) 7 (v) Backbone Transmission System; and 8 (vi) Storage (injection, inventory, and withdrawal). 9 10 Once the functional allocation is complete, the cost of each function is then allocated to each customer class. The customer classes are: 11 12

- (i) Core (residential, commercial/industrial, natural gas vehicle (NGV), gas air conditioning, gas engine);
- (ii) Noncore (commercial/industrial, electric generation, wholesale, enhanced oil recovery); and
- (iii) Other (backbone transportation service).

Finally, I present total cost allocations among all customer classes in Table 5.

III. COST ALLOCATION PRINCIPLES

13

14

15

16

17

18

19

20

21

22

23

24

In determining cost allocation, the following principles are followed by SoCalGas: allocate costs to customer classes based on cost causality, and maintain consistency with the existing practices whenever possible. The fundamental principle applicable to these LRMC cost studies, for purposes of allocating costs to customer groups, is the concept of cost causation. Cost causation seeks to determine which customer or group of customers causes the utility to incur particular types of costs. The essential element in the selection and development of a

reasonable cost allocation methodology is the establishment of relationships between customer requirements, load profiles, usage characteristics, and the costs incurred by the utility in serving those requirements. A cost allocation based on cost causation therefore seeks to present cost-based rates.

IV. COST ALLOCATION METHOD PROPOSED FOR SOCALGAS

SoCalGas proposes to continue the LRMC method for the three major functional categories: Customer-related, Medium Pressure Distribution-related, and High Pressure Distribution-related. The LRMC method was proposed in Application (A.) 18-07-024, the last Triennial Cost Allocation Proceeding (TCAP) application.² In addition, SoCalGas proposes to continue to use the currently-adopted Embedded Cost method for the Transmission and Storage functions as presented in the testimony of Frank Seres (Chapter 8). The Embedded Cost method was also proposed in the last TCAP.

LRMC refers to the incremental cost to serve one additional unit in the long run; such a unit cost is called marginal unit cost. The cost causation unit is called a marginal demand measure. The consolidated marginal demand measures are presented in the testimony of Wei Bin Guo (Chapter 5). The LRMC-based functional revenue (i.e., marginal cost revenue) is derived by multiplying the marginal unit cost by the number of marginal demand measures (MDM). For Customer-related costs, the marginal demand measure is the number of customers. For Medium Pressure Distribution-related and High Pressure Distribution-related costs, the marginal demand measures are peak day demand³ and peak month demand, 4 respectively.

² See D.20-02-045.

Peak Day Demand is forecast to be in December. See Chapter 2 (Guo).

⁴ Peak Month is defined as December. *See* Chapter 2 (Guo).

In this Cost Allocation Proceeding (CAP), SoCalGas updates the LRMC study presented in prior TCAPs to reflect 2021 actual costs and allocations based on 2021 underlying activities. These costs are then escalated to 2024 dollars to reflect SoCalGas costs for the first year of the new CAP cycle.⁵ For the Customer-related and Medium and High Pressure Distribution-related functions, the marginal unit costs are then multiplied by the forecasted MDM to determine the marginal cost revenues.

Each functional marginal unit cost consists of two components: a capital cost component and an operations and maintenance (O&M) cost component. The capital cost component reflects the capital investment required to serve an additional unit. Customer-related capital costs are associated with service lines as well as meters and regulators (collectively called meter set assemblies, or MSAs). For Customer-related costs, this is the cost of serving an additional customer. Marginal Customer-related capital costs have been developed using the Rental method, adopted in the last TCAP, which reflects the annualized capital cost of hooking up an additional customer.

For Medium and High Pressure Distribution-related costs, LRMC represents the cost of providing an additional increment of gas throughput⁶ through the distribution system. Marginal demand capital costs have been developed using linear regression models to determine the relationship between demand growth and investments over a 15-year period spanning historical and forecast periods.⁷

⁵ Peak Month is defined as December. *See* Chapter 2 (Guo).

The MDM for Medium Pressure Distribution is peak day demand. The MDM for High Pressure Distribution is peak month demand.

D.92-12-058 adopted the regression methodology and has since been utilized in every subsequent cost allocation proceeding to my knowledge.

O&M costs for both Customer-related and Medium and High Pressure Distribution-related functional categories reflect the activities of field personnel and support services associated with field activities. O&M loaders are applied to the direct O&M costs to reflect a proportional share of the indirect costs associated with field activity labor. O&M loaders represent indirect costs, and include pension and benefits, general plant, and other costs that support the direct labor costs. The O&M loading factors are applied to the direct O&M costs to develop fully-loaded O&M costs for each customer class. Fully-loaded O&M costs are added to the marginal capital costs to derive the marginal unit cost for each functional category.

V. CUSTOMER-RELATED MARGINAL UNIT COST

Customer-related marginal unit cost reflects the cost of a customer's access to the gas utility's supply system,⁸ and is comprised of: (1) the marginal capital cost of service lines and MSAs; (2) the marginal direct O&M costs associated with the installation and service of those assets, as well as other customer support functions; and (3) O&M loaders. Each of these components are discussed next.

A. Marginal Capital Cost

Marginal capital cost reflects the facilities and equipment for MSAs and service lines. For residential and small core commercial and industrial customers, marginal capital costs are calculated using the actual new customer hookups in SoCalGas's service territory using the recent five years of available data (2017 - 2021). For other customer classes, all customers, not just new customers, belonging to a specific customer class are used to estimate marginal capital

Id. at 38.

costs for MSAs and service lines because of low customer growth rates and the large variations in meter costs for these customers.

1. MSA Costs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

MSA costs include the cost of the meter, regulator, and other equipment required in hooking up a new customer and the direct labor cost for installing the equipment. The marginal costs of MSAs have been derived in the following manner:

- Extracted meter size, type, and service pressure level information, at the customer level, from SoCalGas's Customer Information System;
- Applied actual 2021 MSA cost data for the various meter sizes, types, and service
 pressure levels to MSA configurations at the customer level; and
- Derived customer class-specific marginal MSA costs as the weighted average
 MSA costs for all customers in each customer class.

2. Service Line Costs

The marginal costs of service lines have been derived as follows:

- Extracted service line lengths, pipe types, and pipe diameter data, at the customer level;
- b) Applied unit cost data by pipe type and diameter to the average length of service lines for each customer in the various customer classes. The service line history are based on 2017 - 2021 data from Gas Distribution. The service unit costs were escalated for labor and nonlabor overheads⁹; and

For new service lines and meters, I took into consideration Line Extension Allowance, per SoCalGas's Rule 20.

 Derived customer class-specific marginal service line costs as the average service line costs for all customers in each customer class.

B. Marginal Direct O&M Costs

Customer-related marginal O&M costs are broken into five components: (1) customer services, (2) customer accounts, (3) meters and regulators, (4) service lines, and (5) O&M loaders. The first four components comprise the total direct O&M costs, which are based on 2021 recorded O&M expenses.

1. Customer Services O&M Costs

Customer Services O&M costs include the field services' recorded expenses associated with the O&M of SoCalGas-owned equipment, as well as inspection and service of customer-owned appliances. Customer Services activities and the associated costs result from responses to customer service requests and company-generated work orders, including investigating reports of potential gas leaks and responding to other emergencies, establishing/terminating gas service, conducting customer appliance checks, shutting off and restoring gas service for fumigations, performing meter and regulator changes, inspecting meter sets for atmospheric corrosion and remediating conditions found during the inspections, and other related services at customer premises. Requests are categorized into general order types for which both frequency and duration are recorded. Costs also include support costs associated with related field activities, such as field order dispatch costs, staff and supervision costs, communication costs, as well as an allocation of vehicle, tools, and uniform costs.

Orders are apportioned to customers and customer classes using data from SoCalGas's

Customer Services dispatching system, the Portable Automated Centralized Electronic Retrieval

(PACER) system. The Data Analysis Reporting Tools (DART) system tracks orders by time to complete each activity by customer class.

Customer Services O&M costs are recorded in Federal Energy Regulatory Commission (FERC) Functional Accounts 870, 878, and 879. These costs are allocated across customer classes at each functional account level based on either the total time to complete the orders or the total order volume. Functional Account 879.010 (Customer Services Field) is the largest customer services account. These costs are allocated across customer classes based on the field time recorded for each customer class.

2. Customer Accounts O&M Costs

Customer Accounts O&M costs include the recorded expenses incurred to receive calls from customers requesting service, obtain monthly-metered gas consumption data from non-automated meters, calculate and reconcile billing information, print and mail gas bills and collection notices to customers, respond to inquiries related to billing and collections, perform collection activities, and process customer payments.

Customer Accounts O&M costs are booked to FERC Accounts 901 through 905.

Customer Resource Center activity, which is recorded in FERC Accounts 903.101 and 903.107, is one of the largest components of Customer Accounts O&M. This includes field service calls, customer account inquiries, and general customer inquiries. The associated costs are allocated among customer classes based on the number of accounts and the weighted call volumes. Field orders are further tracked by type of activity (e.g., turn-on requests) and customer class.

Meter reading costs, which are recorded in FERC Account 902, a component of Customer Accounts O&M, are substantially low with the deployment of Advanced Meter Infrastructure (AMI) for core customers. The costs associated with manually reading core

meters are allocated based on the weighted read times for core customers. The costs associated with the daily collection of electronic measurement for noncore customers are allocated by the number of noncore active meters.

Bill distribution and remittance costs are for postage and remittance processing costs and are recorded in FERC Account 903.700. The allocation of these costs across customer classes is performed based on the number of active customer accounts.

Office credit and collections and field collections costs are for costs associated with active and closed collections processing which include the following activities: following up on delinquent accounts, investigating fraudulent activity, skip tracing of unpaid closed accounts, postage costs for mailing collections notices, handling bankruptcies/receivership/probates, and collection of non-gas payments. These costs are recorded in FERC Account 903.104. FERC Account 903.105 reflects costs incurred for field collection activity that involves either collecting the delinquent amount due or terminating gas services. The allocation of these costs across customer classes is performed based on the number of field orders. In 2021, these costs are low due to the COVID_19 Relief Payment Plan.

Supervision and staff support costs (FERC Accounts 903.1 and 905) are allocated based on the activities supported. For example, Account 903.100 is an allocation of all related line and staff functions, including billing, meter reading, the Customer Resource Center, and branch services. The total allocation for these various functions is used to develop the allocator for supervision of these functions.

3. Meters and Regulators O&M Costs

Meters and Regulators O&M costs include repair of MSAs and meter guards. Meters and Regulators O&M costs are allocated based on two allocation methods. First, costs that are

common to all customer segments are allocated according to each customer segment's share of total connected meters in service. Second, costs specifically identifiable as meter repair and replacement are allocated based on each customer segment's share of the total number of meter repairs and replacements during the year.

4. Service Lines O&M Costs

Service maintenance work is generally corrective in nature and is required to keep the natural gas system operating safely and reliably. Service Lines O&M costs are allocated to each customer class based on each class's share of total service line footage at year end 2021.

5. Customer Services and Information Costs

Customer Services and Information costs are for activities which include account management services to nonresidential and residential customers; products and services for homebuilders and developers; services for capacity, pipeline, and storage; gas transmission planning; gas sustainability; environmental affairs; biofuels market development; clean energy innovations; and customer research, outreach, communication, and education and are booked to FERC Accounts 907 through 910. These costs are broken down between market segments and allocated by the number of customers. The exception is the Energy Markets costs, which are broken down by staff responsibilities.

C. Calculation of Customer-Related Marginal Unit Cost and Marginal Cost Revenue

The marginal unit cost for Customer-related costs (MUC_C) for capital and O&M is calculated as follows:

 MUC_C (\$/customer) = $[CAPEX^{10} per customer x RECC^{11}\%] + [fully loaded O&M]$

¹⁰ CAPEX refers to capital expenditures for marginal MSA and service line capital costs.

is then calculated as follows:

1

2

3

4

 $Customer\text{-}related\ MCR\ (\$) = MUC_C\ x\ \#\ of\ customers$

Once the MUC_C is calculated, then for each customer class, the marginal cost revenue (MCR)

Table 1 shows the total MUC_C for each customer class.

TABLE 1 Calculation of Marginal Customer Costs 2024 \$/Customer

		2024	\$/Customer		
Customer Class	CAPEX \$/customer	RECC	Annualized CAPEX (\$/customer/year)	O&M and Loaders (\$/customer/ year)	Marginal Unit Cost 2024 (\$/customer/ year)
Residential	\$1,936.79	7.37%	\$142.76	\$145.62	\$288.38
Core C/I ¹⁴	\$12,388.50	7.09%	\$878.76	\$724.76	\$1,603.52
Gas A/C ¹⁵	\$84,402.52	6.99%	\$5,899.62	\$1,491.30	\$7,390.92
Gas Engine ¹⁶	\$208,702.74	6.91%	\$14,426.44	\$953.52	\$15,379.96
NGV	\$178,300.01	7.68%	\$13,695.81	\$41,532.12	\$55,227.93
Noncore C/I ¹⁷	\$587,618.19	7.39%	\$43,399.46	\$24,452.12	\$67,851.57
Small EG ¹⁸	\$294,166.14	7.44%	\$21,884.11	\$10,346.66	\$32,230.78
Large EG ¹⁹	\$1,703,116.58	8.13%	\$138,533.17	\$68,605.03	\$207,138.21
EOR ²⁰	\$728,828.22	7.90%	\$57,602.56	\$34,008.27	\$91,610.84
Long Beach ²¹	\$10,265,059.48	9.04%	\$927,589.73	\$246,637.98	\$1,174,227.71
SDG&E ²²	\$26,384,543.35	9.04%	\$2,384,207.47	\$231,542.60	\$2,615,750.06
Southwest Gas ²³	\$5,359,168.35	9.04%	\$484,274.79	\$305,655.23	\$789,930.02
Vernon ²⁴	\$5,126,021.11	9.04%	\$463,206.72	\$178,378.16	\$641,584.88
Ecogas ²⁵	\$754,437.82	9.04%	\$68,173.86	\$101,400.99	\$169,574.86

¹⁴ Core C&I are the Core Commercial & Industrial customers

 $^{^{\}rm 15}$ Gas A/C are the Gas Air Conditioning for Commercial & Industrial customers

 $^{^{\}rm 16}\,$ Gas Engine are Core Gas Engine Water Pumping Service for Commercial and Industrial

RECC refers to real economic carrying charge described in Section VII below. RECC is applied to annualize marginal capital costs.

- ¹⁷ Noncore C/I are Noncore Commercial & Industrial customers
- ¹⁸ Small EG are Electric Generation customers with usage less than 3 million therms/year
- ¹⁹ Large EG are Electric Generation customers with usage greater than 3 million therms/year
- ²⁰ EOR are Enhanced Oil Refinery customers
- ²¹ Long Beach is the Wholesale City of Long Beach customer
- $^{\rm 22}~SDG\&E$ is the Wholesale San Diego Gas & Electric customer
- ²³ SW Gas is the Wholesale Southwest Gas Corporation's service territory in southern California
- ²⁴ Vernon is the Wholesale City of Vernon customer

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

²⁵ Ecogas is the Wholesale – ECOGAS Mexico, S. de R.L. de C.V. customer

VI. MEDIUM AND HIGH PRESSURE DISTRIBUTION-RELATED MARGINAL UNIT COSTS

Medium and High Pressure Distribution-related marginal unit costs consist of three types of costs: (1) capital-related, (2) direct O&M, and (3) O&M loaders. The capital costs are recorded in the plant accounts for mains (FERC Account 376) and measuring and regulating station equipment (FERC Account 378). Direct O&M costs are recorded in FERC Accounts 874, 875, 887, and 889 for mains and measuring and regulating stations. Distribution O&M work includes maintenance on mains, application of corrosion control measures, valve maintenance, regulator station maintenance, checking for odorant, and locating and marking buried pipes to avoid damage caused from digging by non-company individuals or entities.

SoCalGas develops separate marginal costs for Medium Pressure Distribution and High Pressure Distribution functions because the cost drivers are different between the two functions.

A. Medium Pressure Distribution Marginal Unit Cost and Marginal Cost Revenue

The marginal unit cost for Medium Pressure Distribution consists of: (1) an annualized capital-related cost (or marginal capital cost), and (2) fully-loaded marginal O&M cost.

1. Marginal Capital Cost

The marginal capital cost is developed using a linear regression model, recognizing that peak day demand is the MDM or cost driver for the Medium Pressure Distribution system. The

1 re.
2 ca
3 cu
4 5 am
6 of
7 es
8 9 in
10 ea

11

12 13 regression analysis establishes the causal relationship between cumulative load growth-related capital investment in the Medium Pressure Distribution system (the dependent variable¹²) and cumulative peak day demand growth (the independent variable¹³).

Load growth-related investments include new business, pressure betterment, and meter and regulating station investments. The period for the regression analysis is 15 years: ten years of historical data (2012 - 2021) and five years of forecast data (2022 - 2026). The resulting estimated regression coefficient of the independent variable represents the marginal capital cost.

The cumulative peak day demand growth is calculated based on the net positive change in the number of customers per year multiplied by the average peak day demand per customer for each class. Table 2 below shows the cumulative peak day demand and the cumulative load growth-related capital investment in the Medium Pressure Distribution system.

TABLE 2

Year	Cumulative MMcfd	Cumulative CAPEX \$000's
2012	13	\$32,152
2013	41	\$74,960
2014	54	\$138,143
2015	69	\$192,211
2016	95	\$246,579
2017	117	\$297,050
2018	132	\$352,829
2019	150	\$407,911
2020	165	\$478,173
2021	179	\$539,825
2022	204	\$599,310
2023	221	\$660,385
2024	238	\$722,083
2025	254	\$785,577
2026	269	\$850,941

The dependent variable represents the output or outcome whose variation is being studied.

¹³ The independent variables represent inputs or causes, i.e., potential reasons for variation.

The regression analysis results are depicted in Figure 1 below.

2

1

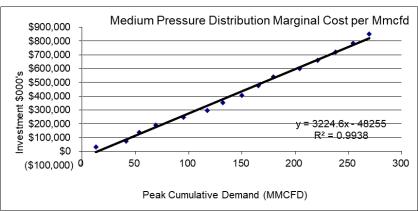
3

4

5 6

7 8

10


9

11 12

13 14

15

FIGURE 1

2. **Marginal Direct O&M Costs**

The 2021 recorded direct O&M costs are allocated between Medium Pressure and High Pressure Distribution systems based on the split in total distribution capital investment between those two systems. Direct O&M costs are booked to FERC Accounts 874, 875, 887, and 889.

3. Calculation of Medium Pressure Distribution Marginal Unit Cost and **Marginal Cost Revenue**

The calculation of marginal unit cost for Medium Pressure Distribution (MUC_MPD) is as follows:

$$MUC_MPD\ (\$/Mcfd^{14}) = [CAPEX\ per\ Mcfd\ x\ RECC\%] + [fully\ Loaded\ O\&M]$$

Once the MUC_MPD is calculated for each customer class, the marginal cost revenue (MPD_MCR) is then calculated as follows:

$$MPD_MCR\left(\$\right) = MUC_MPD\ x\ Mcfd$$

¹⁴ Mcfd is a unit of measurement for gas representing a thousand cubic feet per day.

Table 3 shows the calculation of the MUC_MPD. Marginal Cost Revenue is presented in Section VIII.

TABLE 3

Marginal Cost for Medium Pressure Distribution (MPD) (2024 \$/Mcfd peak day)						
Capital-related Charge:						
MPD Regression Coefficient \$/Mcfd	\$3,224.58					
x RECC Factor	6.98%					
= Annualized Capital-related Charge (\$/Mcfd)	\$225.14					
+ Direct O&M	\$26.54					
+ A&G	\$23.14					
+ GP	\$23.04					
+ M&S	\$0.31					
= Marginal Unit Cost (\$/Mcfd)	\$298.17					

B. High Pressure Distribution Marginal Unit Cost and Marginal Cost Revenue

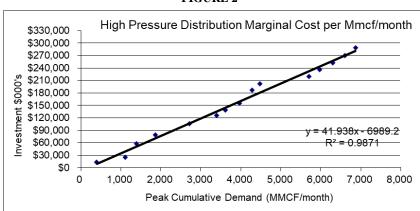

The methodology for calculating the marginal capital-related cost for the High Pressure Distribution system is analogous to the methodology used for the Medium Pressure Distribution system. Cumulative load growth-related investment costs in the High Pressure Distribution system are regressed against cumulative load growth. The coincident peak month demand served off the High Pressure Distribution system is used as the measure of MDM or cost driver for the HPD system. Table 4 below shows the cumulative coincident peak month demand and the cumulative load growth-related capital investment in the High Pressure Distribution system.

TABLE 4

Year	Cumulative Mmcf/ month	Cumulative CAPEX \$000's
2012	396	\$12,856
2013	1,117	\$24,490
2014	1,386	\$58,268
2015	1,867	\$78,405
2016	2,716	\$105,383
2017	3,401	\$125,656
2018	3,615	\$139,226
2019	3,970	\$155,572
2020	4,282	\$186,789
2021	4,478	\$201,641
2022	5,702	\$219,070
2023	5,971	\$236,078
2024	6,296	\$253,038
2025	6,607	\$270,570
2026	6,869	\$288,699

2 The regression analysis results are depicted in Figure 2 below.

FIGURE 2

4

5

7

3

The calculation of the marginal unit cost for High Pressure Distribution (MUC_HPD) cost is as

6 follows:

 MUC_HPD (\$\mathcal{M}cf\s/month) = [CAPEX per Mcf\s/month x RECC\%] + [fully loaded O&M]

For each customer class, the marginal cost revenue for High Pressure Distribution (HPD_MCR) is then derived as follows:

 HPD_MCR (\$) = MUC_MPD x Mcf/month

Table 5 shows the calculation of the MUC_HPD.

3

4

5

7

8

9

10

11

12

13

14

15

TABLE 5 Marginal Cost for High Pressure Distribution (2024 \$/MCF/month)

Capital-related Charge:	044.04
HPD Regression Coefficient \$/Mcf/month	\$41.94
x RECC Factor	6.95%
= Annualized Capital-related Charge	
(\$/Mcf/month)	\$2.91
+ Direct O&M	\$0.44
+ A&G	\$0.39
+ GP	\$0.38
+ M&S	\$0.10
= Marginal HP Distribution	
Cost(\$/MCF/month)	\$4.23

VII. MARGINAL COST ESTIMATION FACTORS

A. Real Economic Carrying Charge (RECC) Factors

In the previous sections, RECC factors appeared in the calculation of marginal unit costs for customer-related costs as well as for Medium and High Pressure Distribution. RECC factors are used to convert capital investment into annualized capital costs. The LRMC Decision established the use of RECC factors in LRMC studies:

The Total Investment computes an arithmetic average by dividing the total investment during the planning horizon by the total load growth using the same period. The resulting unit marginal cost is than annualized using a Real Economic Carrying Cost (RECC) factor. The RECC capital amortization formula levelizes a stream of future payments in a manner similar to an annuity

calculation but with an inflation adjustment. RECC models incorporate assumptions for service life, salvage value, cost of capital, inflation rates, and discount rates. ¹⁵

The RECC factors used in the tables above are the weighted averages for the respective Customer-related, Medium Pressure Distribution-related, and High Pressure Distribution-related functional categories, and, when applied to a capital investment, produce the first year charge of a series of annualized capital charges that remain constant in real terms over the life of the asset. The RECC factor is a function of authorized rate of return, inflation, salvage value, book life, and tax rates. Based on the differing book lives and salvage values of utility assets, separate RECC factors have been developed for service lines, pressure regulators, meters, and distribution capital investments.

SoCalGas has updated its RECC factors using inflation assumptions from Global Insight's forecast, updated tax rates, and SoCalGas's discount rate of 9.39% revised per the 2020 Cost of Capital Decision (D.19-12-056). The authorized book lives and salvage values for the different investments have also been updated to reflect current factors.

B. O&M Loaders

I developed three distinct O&M loaders that are applied to direct marginal O&M costs to develop the fully-loaded O&M cost for each functional category, customer costs, and distribution. These loading factors reflect indirect costs for: (1) administrative and general (A&G) expenses, (2) general plant, and (3) materials and supplies (M&S). The A&G and general plant loading factors are percentages that are applied to the direct O&M costs for each functional category. M&S costs are assigned to each functional category based on plant

¹⁵ D.92-12-058 at 32.

investment. Application of O&M loaders to direct marginal O&M costs produces fully-loaded marginal O&M cost.

1. A&G Loading Factor

Marginal A&G expenses and payroll taxes are combined into a single loading factor, with an adjustment to reflect the exclusion of Storage-related and Transmission-related costs. The loading factor derived in Table 6 below reflects the ratio of marginal A&G expenses plus payroll taxes to net O&M expenses. Net O&M expenses are calculated as total O&M expenses minus the sum of total production expenses, ¹⁶ total A&G expenses, total transmission expenses, total storage expenses and exclusions not included in the base margin.

Recorded 2021 A&G expenses have been classified as either marginal or non-marginal on an account-by-account basis. Any costs that vary with either the size of labor force or the size of plant are deemed marginal costs for this study.

TABLE 6
A&G Loading Factor

= Marginal A&G Loading Factor as a % of O&M	87.20%
/ Net O&M Costs \$000	\$321,026
+ Total Payroll Taxes \$000 = Marginal A&G and Payroll Taxes \$000	<u>\$48,408</u> \$279,938
Total Marginal A&G Costs \$000's	\$231,530

2. General Plant Loading Factor

Gross general plant, as reflected in FERC Accounts 390 through 398, includes general plant in service as of year-end 2021 for structures and improvements, office furniture and

Total Production Expenses reflects gas costs.

equipment, computer applications and equipment, shop and garage equipment, and communication equipment. RECC factors associated with each capital category and the amounts of gross plant in service at year-end 2021 are used to calculate a weighted average general plant accounts RECC factor. The general plant accounts RECC factor is then applied to gross general plant in service as of December 31, 2021, to derive an annualized cost for general plant. This annualized general plant cost is divided by year 2021 net O&M expenses to derive the general plant loading factor, as shown in Table 7 below. Like the A&G loading factor, the derivation of general plant loading factor excludes Storage- and Transmission-related costs.

TABLE 7
General Plant Loading Factor

General Plant Loading Factor as a % of O&M	86.83%
Net Recorded O&M Costs \$000	\$321,026
Total General Plant \$000 Weighted Average RECC for General Plant Annualized General Plant Costs	\$1,894,525 <u>14.71%</u> \$278,751

3. M&S Loading Factor

M&S is comprised of materials and supplies kept in stock for use in daily field operations and in capital projects. Examples of M&S items include pipe, valves, fittings, and safety equipment. Recorded 2021 M&S costs are allocated based on gross gas plant in each functional category. Applying an M&S loading factor is appropriate because M&S is a component of the indirect costs. Distribution M&S is further categorized as customer-related and demand-related distribution plant investment. As with the other O&M loaders for customer-related and distribution functions, Storage-related and Transmission-related M&S costs have been removed from this analysis.

The functionally allocated M&S costs are annualized using the RECC factor developed for M&S investments. The annualized M&S costs are then added to the marginal O&M costs for each function to derive fully-allocated O&M costs. The Table 8 below shows the functionalization of the year 2021 M&S costs and the derivation of annual M&S costs for each function.

TABLE 8
M&S Annual Costs

Function	
Customer Related \$000	\$1,807
Load Related \$000	\$2,479
Total	\$4,286

VIII. RESULTS OF THE COST ALLOCATION STUDIES

Upon completing the cost studies to allocate costs to functional categories, SoCalGas allocates each functional cost to customer classes using the following MDMs: number of customers for the customer costs, peak day demand for Medium Pressure Distribution costs and peak month demand for High Pressure Distribution costs. Each MDM reflects the four-year average of forecast annual MDM for the years 2024 - 2027, reflecting the duration of the CAP period.

For the customer-related functional category, Table 9 shows marginal unit costs, customer counts, and marginal cost revenues by customer class on an unscaled basis. The term "unscaled" refers to the sum of the marginal cost revenue for each customer class, not adjusted or "scaled" to equal SoCalGas's authorized base margin. A scalar factor is applied to adjust total marginal cost revenues so that the total revenue requirement from the cost studies, both LRMC and Embedded cost studies, equal the authorized base margin.

TABLE 9 UNSCALED LONG RUN MARGINAL COST REVENUES CUSTOMER COST

	0		
	Customer LRMC	Customer	Customer
Customer Class	\$/customer	Count	Cost \$000
Oustonier Olass	A	В	C
Residential	\$288	5,853,689	
Core C/I	\$1,604	203,015	\$325,538
Gas A/C	\$7,391	5	\$33
Gas Engine	\$15,380	667	\$10,258
NGV	\$55,228	383	\$21,166
Total Core	400,220	333	\$2,045,063
Total Gold			ψ=,σ .σ,σσσ
Noncore C/I	\$67,852	556	\$37,725
Small EG	\$32,231	322	\$10,378
Large EG	\$207,138	60	\$12,428
EOR	\$91,611	32	\$2,932
Total Retail Noncore			\$63,464
Long Beach	\$1,174,228	1	\$1,174
SDG&E	\$2,615,750	1	\$2,616
Southwest Gas	\$789,930	1	\$790
Vernon	\$641,585	1	\$642
Ecogas	\$169,575	1	\$170
Total Wholesale			\$5,391
UBS	\$0	0	\$0
BTS	\$0	0	\$0
Total Noncore			\$68,855
Total SoCalGas			\$2,113,918

 $^{^{\}rm 30}$ Ecogas is the Wholesale – ECOGAS Mexico, S. de R.L. de C.V.

2

Table 10 shows unscaled Medium Pressure and High Pressure Distribution marginal cost revenues by customer classes. Medium Pressure Distribution costs are allocated using 1-in-35 peak day core / 1-in-10 cold day noncore Medium Pressure Distribution service level peak day

 $^{^{\}rm 31}$ UBS is the Unbundled Storage Program

 $^{^{\}rm 32}\,$ BTS is Backbone Transportation Service

demand. High Pressure Distribution costs are allocated using High Pressure Distribution service

level peak month demand.

1

TABLE 10
UNSCALED LRMC COST REVENUES
DISTRIBUTION COSTS

Customer Class	Medium Pressure Distribution LRMC \$/mcfd A	Medium Pressure Distribution Peak Day (mcfd) B	Medium Pressure Distribution Costs \$000	High Pressure Distribution LRMC \$/mcfd D	High Pressure Distribution Peak Month Demand (mcf)	High Pressure Distribution Costs \$000 F
Residential	\$298.17	2,144,132	\$639,325	\$4.23	34,561,076	\$146,204
Core C/I	\$298.17	477,606	\$142,410	\$4.23	9,832,908	\$41,596
Gas A/C	\$298.17	28	\$8	\$4.23	866	\$4
Gas Engine	\$298.17	2,278	\$679	\$4.23	82,770	\$350
NGV	\$298.17	22,338	\$6,661	\$4.23	1,251,089	\$5,292
Total Core			\$789,083			\$193,446
Noncore C/I	\$298.17	100,714	\$30,030	\$4.23	7,344,958	\$31,071
Small EG	\$298.17	22,821	\$6,805	\$4.23	940,813	\$3,980
Large EG	\$298.17	11,394	\$3,398	\$4.23	1,773,980	\$7,504
EOR	\$298.17	4	\$1	\$4.23	907,410	\$3,839
Total Retail Noncore			\$40,234			\$46,394
Long Beach	\$298.17	0	\$0	\$4.23	0	\$0
SDG&E	\$298.17	0	\$0	\$4.23	0	\$0
Southwest Gas	\$298.17	0	\$0	\$4.23	0	\$0
Vernon	\$298.17	0	\$0	\$4.23	0	\$0
Ecogas	\$298.17	0	\$0	\$4.23	0	\$0
Total Wholesale			\$0			\$0
UBS	\$298.17	0	\$0	\$4.23	0	\$0
BTS	\$0.00	0	\$0	\$0.00	0	\$0
Total Noncore			\$40,234			\$46,394
Total SoCalGas			\$829,317			\$239,840

In D.92-12-058, the Commission stated that "marginal cost revenues need to be scaled to the embedded-based authorized revenue requirement under our ratemaking procedures." The scalar is employed to adjust the proposed marginal cost revenues to the base margin, excluding costs directly allocated to the Transmission, Storage, Uncollectible, ¹⁸ and NGV Public Access functions. In this CAP, marginal costs are scaled at a rate of 70% in order to reconcile to the base margin of \$2,214,1102,216,057 thousand. Table 11 shows this process.

1

2

3

4

5

D.92-12-058 at 50.

Uncollectible (not collected revenues) are treated separately because SoCalGas' wholesale customers do not have any uncollectibles.

Formatted Table

TABLE 11
LRMC-COST-SCALED-REVENUES
SCALED-CUSTOMER-& DISTRIBUTION-COSTS
(\$000)

-Total SoCalGas	\$2,113,9 48	\$829,31 7	\$ 239,84 0	\$3,183,0 75	70 %	\$2,214,11 0
-	\$2.113.9	\$829.31	- \$220.04	- \$2.492.0	- 70	£2 244 44
-Total Noncore	\$68,855	\$40,234	\$46,394	\$155,483	%	\$ 108,152
BTS	\$0	\$0	\$0	\$0	% 70	\$0
	* -	**	**		70	**
UBS	<u>\$0</u>	<u>\$0</u>	<u>\$0</u>	<u>\$0</u>	63 %	\$0
- Total VYHOICSAIC	φυ,υυ Ι -	₩U -	Ф∪ -	φυ,υυ 1 −	70	φο,≀ο∪ -
Total Wholesale	\$5.391	\$0	\$0	\$5.391	70 %	\$3.750
Ecogas	\$170	\$0	\$0	\$170	%	\$118
Vernon	\$642	\$0	\$0	\$642	% 70	\$446
Southwest Gas	\$790	\$0	\$0	\$790	% 70	\$549
	* ,,=	**	•	* ,	70	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SDG&E	\$2.616	\$0	\$0	\$2.616	70 %	\$1.819
Long Beach	\$1,174	\$0	\$0	\$1,174	70 %	\$817
-	-	_	-	-	-	-
Total Retail Noncore	\$63,464	\$40,234	\$46,394	\$150,091	70 %	\$104,402
EOR Total Potail	\$2,932	\$1	\$3,839	\$6,771	% 70	\$4,710
Large EG	\$12,428	\$3,398	\$7,504	\$23,330	% 70	\$16,228
Small EG	\$10,378	\$6,805	\$3,980	\$21,163	% 70	\$14,721
	, ,	****	V - /-	*,-	70	
Noncore C/I	\$37.725	\$30.030	\$31.071	\$98.827	70 %	\$68,743
-	55 -	9 -	-	32	70	-
-Total Core	\$2,045,0 63	\$789,08 3	\$193,44 6	\$3,027,5 92	70 %	\$ 2,105,95 8
NGV	\$21,166	\$6,661	\$ 5,292	\$33,119	%	\$23,037
Gas Engine	\$10,258	\$679	\$350	\$11,288	% 70	\$7,852
Gas A/C	\$33	\$8	\$ 4	\$45	% 70	\$31
Core C/I	\$325,538	0	\$41,596	\$509,545	% 70	\$354,433
Residential	67	5 \$142,41	4	96	% 70	4
	\$1,688,0	\$639,32	\$146,20	\$2,473,5	70	\$1,720,60
-	A	# B	"	D=A+B+C	E	F=D*E
Customer Class	Customer Cost	Distributio n	Distributio n	LRMC Revenues	Sca lar	LRMC Revenues
		Medium Pressure	High Pressure	Unscaled		Scaled

Calculation of Scalar:

Scalar: - Scalar = [Base Margin - Transmission - Storage - Uncollectibles-NGV Compression Adder] / [Unscaled Customer + Distribution]

Scalar = \$2,214,110 divided by \$3,183,075 -

TABLE 11

LRMC COST SCALED REVENUES

SCALED CUSTOMER & DISTRIBUTION COSTS

\$000's

		Medium Pressure	High Pressure	Unscaled LRMC	0 1	Scaled LRMC
<u>Customer Class</u>	Customer Cost	<u>Distribution</u>	Distribution	Revenues	<u>Scalar</u>	Revenues
	<u>A</u>	<u>B</u>	<u>C</u>	D=A+B+C	<u>E</u>	F=D*E
Residential	<u>\$1,688,067</u>	<u>\$639,325</u>	<u>\$146,204</u>	<u>\$2,473,596</u>	<u>70%</u>	<u>\$1,722,117</u>
Core C/I	<u>\$325,538</u>	<u>\$142,410</u>	<u>\$41,596</u>	<u>\$509,545</u>	<u>70%</u>	<u>\$354,745</u>
Gas A/C	<u>\$33</u>	<u>\$8</u>	<u>\$4</u>	<u>\$45</u>	<u>70%</u>	<u>\$32</u>
Gas Engine	<u>\$10,258</u>	<u>\$679</u>	<u>\$350</u>	<u>\$11,288</u>	<u>70%</u>	<u>\$7,859</u>
<u>NGV</u>	<u>\$21,166</u>	<u>\$6,661</u>	<u>\$5,292</u>	<u>\$33,119</u>	70%	<u>\$23,058</u>
Total Core	\$2,045,063	<u>\$789,083</u>	<u>\$193,446</u>	\$3,027,592	<u>70%</u>	<u>\$2,107,810</u>
_	_	_	_	_	_	_
Noncore C/I	<u>\$37,725</u>	\$30,030	<u>\$31,071</u>	\$98,827	<u>70%</u>	<u>\$68,804</u>
Small EG	<u>\$9,959</u>	<u>\$6,805</u>	<u>\$3,980</u>	\$20,744	70%	<u>\$14,442</u>
Large EG	<u>\$5,178</u>	\$3,398	\$7,504	\$16,080	70%	<u>\$11,195</u>
EG Transmisson	<u>\$7,669</u>	_	=	\$7,669	70%	\$5,339
<u>EOR</u>	\$2,932	<u>\$1</u>	\$3,839	<u>\$6,771</u>	70%	<u>\$4,714</u>
Total Retail Noncore	<u>\$63,464</u>	<u>\$40,234</u>	<u>\$46,394</u>	<u>\$150,091</u>	<u>70%</u>	<u>\$104,494</u>
-	-	-	-	_	-	_
Long Beach	<u>\$1,174</u>	<u>\$0</u>	<u>\$0</u>	<u>\$1,174</u>	<u>70%</u>	<u>\$817</u>
SDG&E	<u>\$2,616</u>	<u>\$0</u>	<u>\$0</u>	<u>\$2,616</u>	<u>70%</u>	<u>\$1,821</u>
Southwest Gas	<u>\$790</u>	<u>\$0</u>	<u>\$0</u>	<u>\$790</u>	70%	<u>\$550</u>
<u>Vernon</u>	<u>\$642</u>	<u>\$0</u>	<u>\$0</u>	<u>\$642</u>	70%	<u>\$447</u>
<u>Ecogas</u>	<u>\$170</u>	<u>\$0</u>	<u>\$0</u>	<u>\$170</u>	<u>70%</u>	<u>\$118</u>
Total Wholesale	<u>\$5,391</u>	<u>\$0</u>	<u>\$0</u>	<u>\$5,391</u>	<u>70%</u>	<u>\$3,753</u>
-	-	-	-	-	-	-
<u>UBS</u>	<u>\$0</u>	<u>\$0</u>	<u>\$0</u>	<u>\$0</u>	<u>70%</u>	<u>\$0</u>
BTS	<u>\$0</u>	<u>\$0</u>	<u>\$0</u>	<u>\$0</u>	<u>70%</u>	<u>\$0</u>
Total Noncore	<u>\$68,855</u>	\$40,234	<u>\$46,394</u>	<u>\$155,483</u>	<u>70%</u>	\$108,247
_	_	_	_	_	_	_
Total SoCalGas	<u>\$2,113,918</u>	\$829,317	<u>\$239,840</u>	\$3,183,075	<u>70%</u>	<u>\$2,216,057</u>

Calculation of Scalar:
Scalar = [Base Margin - Transmision – Storage -Uncollectibles-NGV Compression Adder] / [Unscaled Customer + Distribution]

Formatted Table

Scalar = 2.216.057 divided by 3.183.075

After the derivation of scaled customer and distribution marginal cost revenues by customer classes, the remaining base margin items for Transmission, Storage, NGV, and Uncollectible costs are allocated to customer classes, as shown in Table 12. Local Transmission costs¹⁹ are allocated to customer classes using cold year peak month throughput. Backbone Transmission costs²⁰ are isolated to derive the Backbone Transmission System (BTS) rate. Storage costs²¹ are allocated to customer classes using the storage rates (for inventory, injection, and withdrawal) applied to the capacities for core storage, load balancing, and load balancing plus functions proposed in this CAP.²² Uncollectible and NGV Public Access Station costs are also included. The system average uncollectible rate is 0.278%. The NGV Public Access Station cost is allocated to the NGV class for recovery through the NGV Compressor Adder cost.

Finally, scaled LRMC costs are combined with the Transmission, Storage, Uncollectible, and NGV Public Access costs to determine the proposed cost allocation of authorized base margin. This is presented in Column G of Table 12.

2

3

4

5

6

7

8

10

11

12

13

¹⁹ See Chapter 8 (Seres). FF&U added.

²⁰ Id.

²¹ Id

²² See Chapter 1 (Rincon and Yen).

TABLE 12
ALLOCATION OF BASE MARGIN
(\$000)

	Scaled LRMC			Local	NGV Public		Allocated Base
Customer Class	Revenues	Uncollect	BTS	Transmission	Access	Storage	Margin
_	A	₿	C	Đ	E	F	G
Residential	\$1,720,604	\$5,891	\$0	\$79,303	\$0	\$135,168	\$1,940,967
Core C/I	\$354,433	\$1,288	\$0	\$22,747	\$0	\$32,43 <u>2</u>	\$410,900
Gas A/C	\$31	\$0	\$0	\$2	\$0	\$5	\$38
Gas Engine	\$7,852	\$28	\$0	\$199	\$0	\$885	\$8,964
NGV	\$23,037	\$105	\$0	\$3,296	\$9,018	\$3,891	\$39,348
-Total Core	\$2,105,958	\$7,312	\$0	\$105,547	\$ 9,018	\$ 172,382	\$2,400,217
-	-	_	-	-	-	-	-
Noncore C/I	\$68,743	\$523	\$0	\$31,758	\$0	\$22,508	\$123,532
Small EG	\$14,721	\$67	\$0	\$2,267	\$0	\$1,669	\$18,723
Large EG	\$16,228	\$433	\$0	\$35,993	\$0	\$27,561	\$80,215
EOR	\$4,710	\$0	\$0	\$2,903	\$0	\$2,108	\$9,721
-Retail Noncore	\$104,402	\$1,023	\$0	\$72,920	\$0	\$53,846	\$ 232,191
-	-	_	-	-	-	-	-
Long Beach	\$817	\$0	\$0	\$2,910	\$0	\$1,255	\$4,981
SDG&E	\$1,819	\$0	\$0	\$22,047	\$0	\$29,619	\$53,485
Southwest Gas	\$549	\$0	\$0	\$2,822	\$0	\$1,022	\$4,393
Vernon	\$446	\$0	\$0	\$1,837	\$0	\$1,328	\$3,611
Ecogas	\$118	\$0	\$0	\$2,465	\$0	\$1,909	\$4,492
-Total Wholesale	\$3,750	\$0	\$0	\$32,081	\$0	\$35,132	\$70,963
-	-	_	-	-	-	-	-
UBS	\$0	\$0	\$0	\$0	\$0	\$0	\$0
BTS	-	-	\$294,786	=	-	-	\$294,786
-Total Noncore	\$ 108,152	\$1,023	\$294,786	\$105,001	\$0	\$88,978	\$597,939
Total SoCalGas	\$2,214,110	\$8,335	\$294,786	- \$210,548	- \$9,018	\$261,360	\$ 2,998,156

TABLE 12 ALLOCATION OF BASE MARGIN (\$000)

NGV Public Access Scaled LRMC Revenues <u>Local</u> <u>Transmission</u> Allocated Base Margin **Customer Class** Uncollect **BTS** Storage Α В C D G \$135,034 Residential \$1,722,117 \$5,893 <u>\$0</u> \$79,234 <u>\$0</u> \$1,942,278 \$32,400 Core C/I \$354,745 \$1,288 <u>\$0</u> \$22,727 <u>\$0</u> \$411,160 Gas A/C \$32 <u>\$0</u> <u>\$0</u> <u>\$2</u> <u>\$0</u> <u>\$5</u> <u>\$38</u>

Gas Engine	<u>\$7,859</u>	<u>\$28</u>	<u>\$0</u>	<u>\$199</u>	<u>\$0</u>	\$884	\$8,970
NGV	<u>\$23,058</u>	<u>\$105</u>	<u>\$0</u>	<u>\$3,293</u>	\$9,018	\$3,888	<u>\$39,361</u>
Total Core	\$2,107,810	\$7,314	<u>\$0</u>	<u>\$105,455</u>	\$9,018	\$172,211	\$2,401,808
-	_	_	_	_	_	_	-
Noncore C/I	<u>\$68,804</u>	<u>\$522</u>	<u>\$0</u>	<u>\$31,730</u>	<u>\$0</u>	\$22,486	<u>\$123,541</u>
Small EG	<u>\$14,734</u>	<u>\$67</u>	<u>\$0</u>	<u>\$2,265</u>	<u>\$0</u>	<u>\$1,667</u>	<u>\$18,733</u>
Large EG	<u>\$16,243</u>	\$432	<u>\$0</u>	\$35,961	<u>\$0</u>	\$27,534	\$80,170
<u>EOR</u>	<u>\$4,714</u>	<u>\$0</u>	<u>\$0</u>	<u>\$2,900</u>	<u>\$0</u>	<u>\$2,106</u>	<u>\$9,720</u>
Retail Noncore	<u>\$104,494</u>	\$1,020	<u>\$0</u>	<u>\$72,857</u>	<u>\$0</u>	<u>\$53,793</u>	<u>\$232,164</u>
_	_	_	_	_	_	_	_
Long Beach	<u>\$817</u>	<u>\$0</u>	<u>\$0</u>	\$2,907	<u>\$0</u>	<u>\$1,254</u>	<u>\$4,978</u>
SDG&E	<u>\$1,821</u>	<u>\$0</u>	<u>\$0</u>	<u>\$22,028</u>	<u>\$0</u>	\$29,589	<u>\$53,438</u>
Southwest Gas	<u>\$550</u>	<u>\$0</u>	<u>\$0</u>	\$2,820	<u>\$0</u>	<u>\$1,021</u>	\$4,390
<u>Vernon</u>	<u>\$447</u>	<u>\$0</u>	<u>\$0</u>	<u>\$1,836</u>	<u>\$0</u>	\$1,326	<u>\$3,609</u>
Ecogas	<u>\$118</u>	<u>\$0</u>	<u>\$0</u>	<u>\$2,463</u>	<u>\$0</u>	<u>\$1,907</u>	<u>\$4,488</u>
Total Wholesale	<u>\$3,753</u>	<u>\$0</u>	<u>\$0</u>	\$32,053	<u>\$0</u>	\$35,097	\$70,903
-	-	-	-	-	_	-	-
<u>UBS</u>	<u>\$0</u>	<u>\$0</u>	<u>\$0</u>	<u>\$0</u>	<u>\$0</u>	<u>\$0</u>	<u>\$0</u>
<u>BTS</u>	_		<u>\$293,281</u>	_	_	_	<u>\$293,281</u>
Total Noncore	<u>\$108,247</u>	<u>\$1,020</u>	<u>\$293,281</u>	<u>\$104,910</u>	<u>\$0</u>	<u>\$88,889</u>	<u>\$596,348</u>
- Total SoCalGas	\$2.216.057	\$8.335	\$293.281	\$210.366	<u>-</u> \$9.018	\$261.100	\$2.998.156

_

6

8

10

IX. COMPARISON OF PROPOSED COST ALLOCATION TO CURRENT COST ALLOCATION

The following is a comparison of the proposed 2024 cost allocation to the current allocation effective March 1, 2022. This comparison is pre-System Integration²³ and pre-BTS unbundling,²⁴ as discussed in the testimony of Sharim Chaudhury Michael Foster (Chapter 13).

Relative to the current allocation, the proposed CAP allocation of base margin across customer classes shows a decrease for core customers, including residential customers, an increase for noncore customers and an increase for unbundled backbone transmission service. These allocation changes reflect the impacts of updated cost studies for customer-related, distribution, transmission and storage functions and updated lower demand forecasts.

Shows rates pre-System Integration. Under System Integration, the costs of local transmission facilities are recovered on a common (or integrated) basis from customers of both SDG&E and SoCalGas. This integration reflects the splitting of total local transmission costs between the utilities by the % share of cold-year peak month throughput.

²⁴ Shows allocation pre-BTS unbundling. BTS represents the costs of SoCalGas' and SDG&E's transmission lines from the California Border receipt points to SoCalGas' Citygate.

TABLE 13
COST ALLOCATION COMPARISON
(\$000)

	Proposed Allocation		Current Allocation	
Customer Class	of Base Margin	% Total	of Base Margin	% Total
_	A	₽	C	Đ
Residential	\$1,940,967	64.7%	\$2,124,714	70.8%
Core C/I	\$410,900	13.7%	\$424,019	14.1%
Gas A/C	\$38	0.0%	\$54	0.0%
Gas Engine	\$8,964	0.3%	\$12,656	0.4%
NGV	\$39,348	1.3%	\$28,391	0.9%
- Total Core	\$2,400,217	80.1%	\$2,589,834	86.3%
-	_	-	-	-
Noncore C/I	\$123,532	4.1%	\$97,451	3.2%
Small EG	\$18,723	0.6%	\$14,364	0.5%
Large EG	\$80,215	2.7%	\$53,917	1.8%
EOR	\$9,721	0.3%	\$9,994	0.3%
- Total Retail Noncore	\$232,191	7.7%	\$175,725	5.9%
-	_	-	-	-
Long Beach	\$4,981	0.2%	\$2,087	0.1%
SDG&E	\$53,485	1.8%	\$33,225	1.1%
Southwest Gas	\$4,393	0.1%	\$1,972	0.1%
Vernon	\$3,611	0.1%	\$1,787	0.1%
Ecogas	\$4,492	0.1%	\$1,814	0.1%
-Total Wholesale	\$70,963	2.4%	\$40,886	1.4%
-	_	=	-	_
UBS	\$0	0.0%	\$0	0.0%
BTS	\$294,786	9.8%	\$194,258	6.5%
-Total Noncore	\$597,939	19.9%	\$410,869	13.7%
=	=	=	=	=
-Total SoCalGas	\$2,998,156	100.0%	\$3,000,704	100.0%

TABLE 13
COST ALLOCATION COMPARISON
(\$000)

	Proposed Allocation of		Current Allocation of	
Customer Class	Base Margin	% Total	Base Margin	% Total
	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>
Residential	<u>\$1,942,278</u>	<u>64.8%</u>	<u>\$2,124,714</u>	<u>70.8%</u>

Core C/I	\$411,160	13.7%	\$424,019	14.1%
Gas A/C	\$38	0.0%	\$54	0.0%
Gas Engine	<u>\$8,970</u>	0.3%	<u>\$12,656</u>	0.4%
<u>NGV</u>	<u>\$39,361</u>	<u>1.3%</u>	<u>\$28,391</u>	<u>0.9%</u>
Total Core	\$2,401,808	<u>80.1%</u>	<u>\$2,589,834</u>	<u>86.3%</u>
_	_	_	_	_
Noncore C/I	<u>\$123,541</u>	<u>4.1%</u>	<u>\$97,451</u>	<u>3.2%</u>
Small EG	<u>\$18,733</u>	0.6%	<u>\$14,364</u>	<u>0.5%</u>
Large EG	<u>\$80,170</u>	<u>2.7%</u>	<u>\$53,917</u>	<u>1.8%</u>
<u>EOR</u>	<u>\$9,720</u>	<u>0.3%</u>	<u>\$9,994</u>	<u>0.3%</u>
Total Retail Noncore	<u>\$232,164</u>	7.7%	<u>\$175,725</u>	<u>5.9%</u>
_	_	_	-	_
Long Beach	<u>\$4,978</u>	0.2%	<u>\$2,087</u>	<u>0.1%</u>
SDG&E	<u>\$53,438</u>	<u>1.8%</u>	<u>\$33,225</u>	<u>1.1%</u>
Southwest Gas	<u>\$4,390</u>	<u>0.1%</u>	<u>\$1,972</u>	<u>0.1%</u>
<u>Vernon</u>	<u>\$3,609</u>	<u>0.1%</u>	<u>\$1,787</u>	0.1%
<u>Ecogas</u>	<u>\$4,488</u>	<u>0.1%</u>	<u>\$1,814</u>	<u>0.1%</u>
Total Wholesale	<u>\$70,903</u>	2.4%	<u>\$40,886</u>	<u>1.4%</u>
-		_	_	_
<u>UBS</u>	<u>\$0</u>	0.0%	<u>\$0</u>	0.0%
<u>BTS</u>	<u>\$293,281</u>	<u>9.8%</u>	<u>\$194,258</u>	<u>6.5%</u>
Total Noncore	<u>\$596,348</u>	<u>19.9%</u>	<u>\$410,869</u>	<u>13.7%</u>
	_	_	_	_
Total SoCalGas	<u>\$2,998,156</u>	<u>100.0%</u>	<u>\$3,000,704</u>	<u>100.0%</u>

This concludes my prepared direct testimony.

X. QUALIFICATIONS

My name is Marjorie Schmidt-Pines. My business address is 555 West Fifth Street,
Los Angeles, California, 90013-1011. I am Senior Principal Regulatory Economic Advisor in
the CPUC/FERC Gas Regulatory Affairs Department for SoCalGas and SDG&E.

I hold a Bachelor of Science degree in Business Administration with an emphasis in Accounting from California State University at Northridge, California. I have been employed by SoCalGas since 1981 and have held positions of increasing responsibilities as an Accountant and Senior Accountant in the Accounting & Finance department, as an Analyst and a Budget Coordinator in the Gas Supply department, as a Market Advisor for the Marketing and Customer Services departments and Principal Regulatory Economic Advisor in the Regulatory Affairs Department.

As Senior Principal Regulatory Economic Advisor, I represent the Gas Rate Design Group for both SoCalGas and SDG&E in the role of Project Manager, Senior Analyst and witness in various major regulatory proceedings and filings dealing with allocating authorized revenue requirements to functions and customer rate classes, developing rate design for each class, calculating customer rate changes, and computing customers' bill impacts. I train new rate design analysts in the concepts of cost allocation and rate design, how to obtain data from different organizations, how to run the various cost allocation and rate design models.

I have previously testified before the California Public Utilities Commission.