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Executive Summary 

Overview 

The objective of Electric Program Investment Charge 2 (EPIC-2), Project 6 (Collaborative Programs in RD&D 

Consortia) is to accomplish highly leveraged demonstration work through industry collaborative R&D 

organizations. The focus of this project module was to identify methodologies and tools for determining 

the primary drivers for residential photovoltaic (PV) adoption, predict residential PV adoption over time, 

and to demonstrate selected methods on a use case (e.g., propensity to adopt PV on the ZIP code level). 

The effort also developed recommendations about whether to adopt all or some of the methods and tools 

on a commercial basis. The project team focused specifically on residential sector PV market adoption. 

Additionally, the project team conducted machine learning (ML) analytics on disadvantaged communities 

(DAC) ZIP codes and evaluated the difference in propensity to adopt solar PV between DAC and other ZIP 

codes. 

The scope of this project demonstrated methodologies and tools for forecasting the propensity for 

residential customer solar PV adoption in California and SDG&E ZIP Codes. The project included the 

following major tasks.  

• Literature Review and Methodology Justification 

• Methodology Framework Development 

• Demonstration Plan 

• Disadvantaged Communities Analysis 

Using ML, the project team identified the most important attributes driving adoption at the non-DAC and 

DAC ZIP code level as detailed in Error! Reference source not found..  

Table E- 1 Machine Learning Key Customer Attributes 

Non- DAC Key Customer Attributes DAC Key Customer Attributes 

• Average number of credit mortgage type 
inquiries in the last 12 months 

• Average number of credit mortgage type 
inquiries in the last 12 months 

• Climate zone • % Owner Occupied Households 

• Percentage of households that are married 
families 

• Climate zone 

• Average balance on an open auto loan and 
lease trades reported in the last 6 months 

• % Manufactured Housing Units 

• Average household size  

• Percentage of owner-occupied housing units  

 

Comparing adoption in DAC and non-DAC ZIP codes, owner occupancy emerged as a key attribute 

explaining the difference in PV market share. The percentage of owner occupied homes is 63% for non-

DAC ZIP codes, compared to 50% for DAC ZIP codes.  

Key Findings and Conclusions 

The strength of aggregate and ZIP code-level back-casts suggest that causal models can be used to 

forecast residential rooftop PV adoption moving forward with a reasonable degree of accuracy, even when 
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the analysis is spatially disaggregated. Such methods could support integrated resource planning and a 

better understanding of likely solar PV installation location. As demonstrated by the results, the key 

findings of this project can be summarized as follows:  

• Causal models, when appropriately calibrated, can explain historical adoption patterns well. 

• Preliminary results suggest that the adoption of residential solar PV in California and in the SDG&E 

service territory is past the inflection point in the characteristic S-curve of adoption.  

• ML techniques can help to explain historical adoption patterns and can reduce the variance 

between simulated and actual adoption when analyzed at a granular level.  

• The rate of diffusion (i.e., the shape of the S-curve) is reasonably consistent spatially; the long-run 

market share appears to differ more substantially when analyzed at a granular level (e.g., at the 

ZIP code level).  

• ZIP code-level forecasts seem possible with reasonable accuracy.  

• Market share solar PV as a percent of total homes is about 50% higher in non-DAC ZIP codes (6% 

vs. 4% market share).  

• Owner occupancy is a key attribute in explaining the differences between DAC and non-DAC solar 

PV market adoption. 

• Statewide analysis of Non-DAC and DAC ZIP codes generates close fit between simulated and 

actual. 

Recommendations  

The project team recommends that SDG&E not commercially adopt these methods and tools at this 

juncture, without more foundational work being done first.  Based on the pre-commercial demonstration 

results and findings in this project, the following actions by SDG&E or other stakeholders are 

recommended as steps toward commercial adoption of the demonstrated methods and tools. 

• Improve SDG&E’s existing zip-code based Bass diffusion technique with refinements for the long-

run market share parameters based on significant customer attributes. 

• Improve certain model inputs (e.g., historical PPA prices, kilowatt-hour production, technical 

suitability due to shading and orientation, price sensitivity, and correlation between 

homeownership and credit scores).  

• Leverage the same or equivalent methodology to evaluate solar PV adoption for other specific 

segments of interest and potentially individual customer analysis, including but not limited to: 

commercial and industrial customers, low-income customers, and customers on distribution 

feeders that are capacity constrained or at risk for reverse power flow. 

• Adapt the methodology for use in forecasting adoption of other DER types.  

• Consider utilizing a customer discrete choice survey approach to facilitate independent estimation 

of both the long-run market share parameters and the Bass diffusion coefficients. 
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1. Introduction 

1.1  Project Objective 

The objective of EPIC-2, Project 6 (Collaborative Programs in RD&D Consortia) is to accomplish highly 

leveraged demonstration work through industry collaborative R&D organizations. The leveraging includes 

both prospective financial leveraging via co-sponsorship by other members of the collaborative, and 

intelligence leveraging by better informing the project content in EPIC activities with the knowledge of 

relevant activities occurring in a worldwide sense. The focus of this project module was to identify 

methodologies and tools for determining the primary drivers for residential photovoltaic (PV) adoption, 

predict residential PV adoption over time, and to demonstrate selected methods on a use case (e.g., 

propensity to adopt PV on the ZIP code [1] level). The effort also developed recommendations about 

whether or not to adopt all or some of the methods and tools on a commercial basis. The project team 

focused specifically on residential sector PV market adoption, envisioning that—depending on the degree 

of success in the demonstration—the methods and tools might someday be applicable to other areas, 

such as energy efficiency (EE), demand response (DR), non-PV distributed generation (DG), storage, 

electric vehicles (EVs), and microgrids. Additionally, the project team conducted machine learning 

analytics on Disadvantaged Communities (DAC) ZIP codes and evaluated the difference in propensity to 

adopt solar PV between DAC and other ZIP codes. 

1.2 Project Approach 

The project demonstrated tools and methodology for forecasting the propensity for customer adoption of 

DER in various parts of the SDG&E service territory. The major tasks were: 

• Task 1: Formation of an internal SDG&E project team   

• Task 2: Development of a project plan and contractor selection  

• Task 3: Perform demonstration activities 

• Task 4: Prepare comprehensive final report (draft for review and final version) 

• Task 5: Final Report 

1.2.1 Task 1: Formation of the internal SDG&E project team 

Objective: Engage expertise needed to provide technical support. 

Approach: An internal team consisting of engineers from the project’s stakeholder groups within SDG&E 

was formed. 

Output: A project team with structure and assignments. 

1.2.2  Task 2: Development of a project plan and contractor selection 

Objective – Prepare a detailed work plan, competitively procure a qualified contractor, and conduct a 

kickoff meeting with the selected contractor. 

Approach – The internal team met with stakeholders within SDG&E and incorporated their inputs into the 

project plan.  The project team carefully selected the data provided to the contractor, without disclosing 

proprietary and sensitive customer information. The team collaborated on finalization of the project plan.   
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Output – Procurement of contractor and completed project plan.   

1.2.1 Task 3: Demonstration Activities 

Figure 1 below describes the sub-tasks undertaken in Task 3 to demonstrate Methodology and Tools for 

Estimating Propensity for Customer Adoption of Photovoltaics.   

Figure 1. Task 3 Demonstration Activities Summary 

 

Based on the results of the demonstration, the project team identified challenges, recommendations, and 

next steps for future research.  

1.2.2 Subtask 3.1: Literature Review and Methodology Justification 

1.2.2.1 Objective 

Conduct a literature review designed to provide a broad perspective on the methods, tools, and data 

necessary for distributed energy resource (DER) predictive analytics and adoption, with a specific focus on 

solar PV adoption by residential customers. The goal of this literature review was to provide both a 

theoretical and practical foundation to select a methodology, highlighting the benefits of machine 

learning-based enhancements to causal models.  

1.2.2.2 Approach 

The project team’s literature review considered both academic and industry sources and focused on the 

following components: 

• Causal models. Causal models are defined as the class of methods with closed functional 

forms/algebraic equations defining customer propensities and adoption forecasts. The project 

team has observed that the energy industry uses these types of models extensively for both EE 

and DER adoption. Examples include discrete choice models that provide a long-run probability of 

customer adoption (e.g., an equilibrium) and diffusion of innovation/bass models that explain the 

time dynamics and adoption path to that equilibrium. 

• Machine learning models. Machine learning models are defined as a class of methods by which 

the functional form equations defining the relationships between input and output variables may 

not be known a priori and are instead learned through a training process. Multiple industries use 

these types of models to discover correlations between data and observed product adoption 

behaviors that might otherwise be missed. 

• Combined methods. Both academic and industry researchers are working on techniques to 

combine causal and machine learning methods. Although this research remains in its infancy, 

early results suggest that causal models can be enhanced by data-driven, machine learning 

techniques.  

Task 3.1
Literature Review 
and Methodology 

Verification

Task 3.2
Methdology 

Development

Task 3.3
Demonstration

Task 3.4 
Disadvantaged 
Communities 

Analysis
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1.2.2.2.1 Causal Models 

The most common causal modeling paradigm for developing new technology adoption forecasts 

combines seminal theoretical constructs from the fields of economics and marketing science:  

• Consumer utility theory and discrete choice analysis. Nobel Economics Laureate Daniel 

McFadden and others developed a class of consumer preference models fully consistent with 

rational consumers maximizing utility behavior over a discrete set of alternatives, and where the 

analysis outcome represents each alternative as probability of selection. Discrete choice analysis 

has been employed over the last 40 years to a variety of problems including transportation mode 

choice, energy forecasting and the choice of end-use systems and fuels, and existing and new 

product forecasting across a range of industries. As discussed further below, the key common 

feature of these models is that probabilities of selections are easily translated into market shares 

and product sales.  

• Diffusion of innovations and the Bass diffusion model. Although discrete choice analysis 

provides a powerful theoretical and practical backbone for estimating long-run or equilibrium 

market shares of products and services, the modeling outcomes are largely time-invariant. 

Fortunately, Frank Bass and his colleagues in the marketing science field developed the Bass 

diffusion model to simulate the S-shaped approach to equilibrium that is commonly seen for 

technology adoption. In this model, market potential adopters flow to adopters through two 

primary mechanisms: adoption from external influences such as marketing and advertising, and 

adoption from internal influences, or word of mouth. The Bass diffusion model was first used to 

model the adoption of color TVs in the 1960s and has been used to forecast a broad variety of 

new technologies including computers, wireless telephones, smartphones, and now solar PV and 

other DER.  

1.2.2.2.2 Consumer Utility Theory and Discrete Choice Analysis 

Central to robust causal models is characterizing market share through established methodologies. This 

section summarizes key literature related to random utility theory and methods (such as discrete choice 

analysis) that can be used for market share parameter estimation.  

• D. McFadden. “Economic Choices,” presented at the Prize Lecture, Stockholm, Sweden, Dec. 8, 

2000. [2] 

In his acceptance of the Nobel Prize in Economic Science, McFadden gave a lecture that discussed 

the “microeconomic analysis of choice behavior of consumers who face discrete economic 

alternatives.” The theoretical basis for discrete choice analysis, McFadden describes the history, 

development, and application of the multinomial logit model, a means by which to determine the 

probability of choosing one alternative over others given their utility as characterized by their 

measurable attributes. 

The project team modeling approach employs the logit formulation developed and described by 

McFadden in its calculation of the long-run market share of solar PV. The construct is particularly 

suitable for this application, where the study endeavors to obtain more granular forecasts by 

identifying key customer attributes, which are readily incorporated into a logit market share 

formula.  
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• M.E. Ben-Akiva, S.R. Lerman. Discrete Choice Analysis: Theory and Application to Travel 

Demand. Cambridge, MA: The MIT Press, 2006. [3] 

In this work, the authors bring together the research of many to provide a comprehensive 

overview of discrete choice analysis, which they define as “the modeling of choice from a set of 

mutually exclusive and collectively exhaustive alternatives.” Using transportation demand 

forecasting as their case study, the authors detail the theories of individual choice behavior, 

aggregate forecasting techniques, the nested-logit model, and multinomial choice models (among 

others) with an emphasis on their application to real-world policy planning. 

Past studies conducted by the project team have utilized the discrete choice analysis techniques 

described in this seminal textbook to estimate the coefficients of its logit market share model. 

Though this study does not involve a discrete choice analysis component, the project team 

adapted some of the techniques described in this work are adapted to estimate the coefficients 

of each customer attribute within its logit model. 

• L. O'Keeffe. “A Choice Experiment Survey Analysis of Public Preferences for Renewable Energy 

in the United States,” Journal of Environmental and Resource Economics at Colby, vol. 01, 2014. 

[4] 

In this paper, the author utilizes choice experiment surveys to analyze public preferences for the 

features of various renewable energy projects. Conditional and mixed multinomial logit models 

were used to determine the estimates for the important attributes of a project, such as price. The 

results of the study indicate that while consumers are sensitive to increases in the price of 

electricity, they also are willing to pay more for projects that are associated with reducing 

environmental costs. 

1.2.2.2.3 Diffusion of Innovations and the Bass Diffusion Model 

This section provides the more relevant and seminal papers related to diffusion modeling, with a focus on 

the Bass diffusion model, which is the method used in this study.  

• F.M. Bass. “A New Product Growth for Model Consumer Durables.” Management Science, vol. 

15, pp. 215-227, Jan. 1969. [5] 

Dr. Bass describes the development of his model, which is used to estimate the sales of a product 

over time. The model assumes that the probability of adoption at any point in time is related to 

the number of previous adopters. More specifically, Dr. Bass describes the population of potential 

adopters as either innovators or imitators: innovators being those who will be the first to adopt, 

and imitators those who adopt based on the signal that those around them are adopting the 

product. 

The Bass diffusion construct has been applied in scores of studies since its publication in 1969 and 

was reprinted in 2004 after being identified by Management Science as among the Top 10 Most 

Influential Papers published in the 50-year history of Management Science. [6] 

• J.D. Sterman. “The Bass Diffusion Model,” in Business Dynamics: Systems Thinking and 

Modeling for a Complex World, S. Isenberg, New York: McGraw-Hill, 2000, pp. 332. [7] 
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In this chapter of the world’s leading textbook on system dynamics, Dr. Sterman, the Director of 

the System Dynamics Group at the Massachusetts Institute of Technology (MIT), takes the Bass 

diffusion model and describes a few key concepts that improve upon the original model. One 

such concept is market growth—Bass assumed the market size remained constant, while Sterman 

describes incorporating market growth. In addition, Sterman details that the entire population 

will not be interested in purchasing the product given their sensitivity to price, and thus a fraction 

willing to adopt multiplier is required to adjust the population to a more accurate market size. 

Finally, Sterman describes integrating a learning curve that informs how the price of a product 

changes over time as associated with the number of products produced.  

The approach utilized in this demonstration study applies the Bass diffusion model using the 

system dynamics construct described by Sterman. A key advantage of this construct is that it 

permits any model input to vary over time, including product attributes such as cost, efficiency, or 

efficacy as well as exogenous factors such as tax credits or incentives, which can change the 

calculated long-run market share over time. This feature is particularly relevant in the forecasting 

of solar PV adoption, whose characteristics, especially cost, are rapidly declining as the 

technology evolves and whose tax environment is also changing over time.  

• V. Mahajan, E. Muller, and Y. Wind. “Diffusion Models, Managerial Applications and Software,” 

in New-Product Diffusion Models. New York: Springer, 2000, pp. 295-310. [8] 

This book covers several constructs for new product diffusion models, including the Bass diffusion 

model. A key aspect of this reference is that the authors have estimated the p and q coefficients 

of the Bass diffusion model for dozens of technologies using historical product adoption data. 

While one must be cautious in extrapolating the data from this analysis, it does give practitioners 

a reasonable range of estimates as a starting point in any analysis, and the values can be used to 

bound nonlinear optimization routines used to estimate diffusion parameters in other studies, 

such as this one.  

• B. Sigrin, M. Gleason, R. Preus, I. Baring-Gould, and R. Margolis. “The Distributed Generation 

Market Demand Model (dGen): Documentation.” Internet: 

https://www.nrel.gov/docs/fy16osti/65231.pdf. Feb. 2016. [9] 

The National Renewable Energy Laboratory’s (NREL’s) Distributed Generation Market Demand 

model provides an example of how Bass diffusion can be utilized to model technology adoption 

and diffusion. Specifically, the dSolar module simulates the adoption of solar over time as driven 

by the economic attractiveness of adopting. 

• A. Agarwal. “A Model for Residential Adoption of Photovoltaic Systems.” M.S. thesis, California 

Institute of Technology, California, 2015. [10] 

Mr. Agarwal's thesis details the application of Frank Bass' diffusion model to the case of solar PV 

adoption. The model described in the thesis has the flexibility to allow users to input various rate 

structures, subsidies, and customer demographics to conform to the service region of interest. In 

addition, this model was trained on Southern California Edison's residential customer data, which 

included details such as size and date of PV installations, socioeconomic background of the 

customer, location, and monthly energy consumption. 
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1.2.2.2.4 Machine Learning Models 

This section provides foundational references to support the project team’s specification of machine 

learning (ML) models in this project. Researchers in statistics, computer science, and other fields have 

published a significant number of works on ML, especially in the past 25 years. The team selected the 

three references in this section to offer context for the classification and regression tree (CART1) and 

random forest2 models that were applied in this EPIC project. The third reference, “Classification and 

Regression by Random Forest,” is the reference that most directly relates to the methodology used in this 

project. The first reference discusses the theoretical foundation and algorithms from which the project 

methodology can be traced. The second reference compares several of the algorithms spawned from the 

development in the first reference and that are used in practice today, including the random forest model 

used for this project. 

• L. Breiman. Classification and Regression Trees. California: Wadsworth & Brooks/Cole Advanced 

Books & Software, 1984. [11] 

The methodology used to construct tree structured rules is the focus of this monograph. Unlike 

many other statistical procedures, which moved from pencil and paper to calculators, this text's 

use of trees was unthinkable before computers. Both the practical and theoretical sides have 

been developed in the authors' study of tree methods. CARTs reflect these two sides, covering 

the use of trees as a data analysis method and in a more mathematical framework, proving some 

of their fundamental properties. [12] 

• W.L. Loh. “Fifty Years of Classification and Regression Trees.” International Statistical Review, 

vol. 84, pp. 329-348, 2014. [13] 

The first publication of a regression tree algorithm was in 1963. This paper highlights many of the 

popular variants on the original algorithm, which are accessible to researchers today through 

statistical computing platforms like R. Brief summaries of several of the most used algorithms are 

provided. The paper provides example modeling applications using each of the algorithms 

presented, with a comparison of the results. Conclusions are provided that offer guidance on 

pitfalls and algorithm recommendations under different scenarios.  

• A Liaw and M. Wiener. “Classification and Regression by Random Forest.” R News, vol. 2/3, pp. 

18-22, Dec. 2002. [14] 

This paper provides an application-focused overview of random forest methodology and its 

implementation accessible in R through the random forest package. The paper is concise, at just 

over four pages, and provides short summaries of the algorithm, its usage in the R package, and 

recommendations for practical usage. Examples are provided for regression, classification, and 

unsupervised learning.  

                                                           
1 A classification and regression tree (CART) is a ML algorithm for estimating a numerical or categorical outcome using explanatory 
variables, with no specification of the assumed structure of the relationship between the outcome and explanatory variables. 
2 Random forest is a ML algorithm that uses reconciliation from estimates from a large number of CART models on sub-samples of 
historical outcomes and explanatory variables to improve model fit. 
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The project team’s ensemble modeling approach combines CART and random forests where each 

tree in the forest is an instance of a CART. These trees are trained from historical adoption data. 

They discover correlations between adoption and a pool of input features derived from a fusion 

of company and project team data such as measurements derived from utility billing date (e.g., 

average peak load, baseline load, total daily load, etc.), and different consumer attributes 

packaged in the project team solution (e.g., demographics, psychographics, premise, and 

financials). These trees produce adoption profiles that are subsets of key attributes and values 

that drive varying levels of adoption propensity at the individual customer level. 

1.2.2.2.5 Combined Models 

The combination of causal methods and ML is a relatively new field of study. The approach employed by 

the project team in this demonstration project expands upon the approaches previously employed and 

documented in literature, and appears to be novel in its application of integrating ML with a Bass 

diffusion and logit modeling construct in forecasting solar PV adoption. This section describes key papers 

where both causal modeling and ML methods have been applied together.  

• S. Athey and I. Guido. “Machine Learning Methods for Causal Effects.” Internet: 

www.nasonline.org/programs/sackler-colloquia/documents/athey.pdf. 2015. [15] 

This presentation details the development of a combined causal and ML model as part of a paper 

that is still a work in progress. The authors present their foundation for developing a new means 

of estimation that combines a causal approach with machine learning for the prediction 

component of models, with an emphasis on distinguishing between the causal and predictive 

parts of the model. 

• P. Bajari, D. Nekipelov, S. Ryan, and M. Yang. “Demand Estimation with Machine Learning and 

Model Combination.” National Bureau of Economic Research, 2015. [16]  

To develop a tool that would assist econometricians in estimating demand based on large 

observational datasets, the authors compare statistical analysis methods commonly used to 

model consumer behavior with the causal methods used in econometric models. They propose a 

model combining the ML and econometric methods via a weighted linear regression, which was 

shown to improve the accuracy of a sample prediction of sales data pertaining to salty snacks. 

A key element of the modeling approach is the rigor with which the project team assesses the economics 

of solar PV. The approach selected employs a discounted cash flow optimization model that can evaluate 

the economics of a solar PV system from the perspective of both the customer and a third-party owner 

(TPO).3 [17] A key factor in the rapid uptake of solar PV in the recent past has been the removal of the 

upfront cost purchase barrier through TPO in combination with a lease, or power purchase agreement 

(PPA), contract structure. Though the pendulum of system ownership appears to be swinging back toward 

                                                           
3 “Third-party financing is a well-established financing solution in the United States, having emerged in the solar industry as one of 
the most popular methods of solar financing. Third-party solar financing predominantly occurs in two forms: solar leases and 
power purchase agreements (PPAs) In the lease model, a customer signs a contract with an installer/developer and pays for the 
use of a solar system over a specified period of time, rather than paying for the power generated. In the PPA model, the solar 
energy system offsets the customer’s electric utility bill, and the developer sells the power generated to the customer at a fixed 
rate, typically lower than the local utility.” www.epa.gov/repowertoolbox/understanding-third-party-ownership-financing-
structures-renewable-energy.  

http://www.epa.gov/repowertoolbox/understanding-third-party-ownership-financing-structures-renewable-energy
http://www.epa.gov/repowertoolbox/understanding-third-party-ownership-financing-structures-renewable-energy
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customer ownership, TPO is expected to continue to play a large role in the adoption of distributed solar 

PV and thus, must be accounted for in a rigorous adoption model; however, any ownership construct 

(cash purchase, financed, TPO) could be calculated in this model. Discounted cash flow techniques are not 

new, though their application to forecasting solar PV and their ability to help explain pricing strategies of 

TPO system providers is particularly relevant in the solar PV technology space.  

• F. Stermole and J. Stermole. Economic Evaluation and Investment Decision Methods. 

Investment Evaluation Corporation, 2012. [18] 

This textbook provides a comprehensive overview of how to perform economic evaluation under 

many different scenarios. Using examples with respect to industries such as oil & gas, mining, and 

energy, this textbook provides the fundamentals of computing discounted cash flows. 

• Navigant Consulting, Inc. Solar Project Return Analysis for Third Party Owned Solar Systems. 

2016. [19] 

As part of the analysis performed to evaluate the TPO solar PV leasing business model in Arizona, 

Navigant utilized its RE-SIM™ model to conduct discounted cash flow analysis and to compare the 

economics of TPO systems in different service territories. The cash flow streams accounted for in 

this analysis included initial capital outlay, debt-financing cash inflow and interest payments, 

incentives, accelerated depreciation for tax purposes, Federal Investment Tax Credit benefits, and 

much more. The RE-SIM model is a nonlinear optimization model with the objective to minimize 

the lease or PPA rate within the bounds of the constraints. The analysis conducted in this study 

helped to shed light on pricing strategies of TPO PV providers, which is critical to understanding 

the impact of forecast cost declines or tax credit changes and to forecast product adoption. This 

study was submitted as part of formal written and oral testimony in the 2016 UniSource Electric 

rate case (Docket Number E-04204A-15-0142).  

• U. Benzion and J. Yagil. “Decisions in Financial Economics: An Experimental Study of Discount 

Rates,” Advances in Financial Economics, M. Hirschey, J. Kose, A.K. Makhija, Eds. United 

Kingdom: Emerald Group Publishing, 2002, pp. 19-40. [20] 

The authors perform an experimental study involving individuals of varying economic 

understanding, finding that implicit discount rates decrease as the time horizon or monetary sum 

decrease. In addition, they find that implicit discount rates approach market interest rates as the 

economic understanding or formal education of the subjects increases. 

Their results also indicate that across all combinations of the subject’s education, monetary sum, 

and time horizon, people tend to have inherently high implied discount rates. These high implied 

discount rates are captured in the approach used for this demonstration project, which allows for 

sensitivity analyses to be performed around variables such as customer discount rate, incentive 

levels, and payback period as well as the resulting adoption of solar PV. 
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1.2.2.3 Outcome 

After careful review of the literature cited above, the project team identified the methodological 

framework to be demonstrated in this project using combined methods.  The project team chose to use a 

Bass diffusion system dynamics causal model (BDCM) to demonstrate the methodological framework.4 

While multiple options exist for forecasting adoption of any product over time, this approach combines 

several well-established techniques, including Bass diffusion, random utility theory, and system dynamics 

causal modeling, and provides a robustness and flexibility not present in more simplistic approaches (e.g., 

regression of a logistic curve).  When combined with more recently developed ML algorithms, which can 

identify those attributes that are most salient, the methodology offers even greater potential to provide 

comparatively accurate granular adoption forecasts (e.g., at the ZIP code level or possibly lower if more 

granular data is provided).  

1.2.3 Subtask 3.2: Methodology Framework Development  

1.2.3.1 Objective 

Leveraging the literature review, develop a methodological framework to model customer propensity to 

adopt PV systems.  

1.2.3.2 Approach 

This section provides a high-level overview of the methodology selection process for this demonstration 

study. The BDCM model uses a discrete choice market share approach in conjunction with a calibrated 

Bass diffusion model to forecast the adoption of PV or other DER technologies. The approach considers 

situations in which a consumer selects one option from a finite set of alternatives (e.g., the TPO solar PV 

business model presents a choice between two rates of electricity to consumers). In the discrete choice 

portion of the framework, the decision maker chooses the solution that maximizes a utility function that 

depends on several economic and non-economic attributes.  

The BDCM model components simulate the S-shaped approach to equilibrium that is commonly seen for 

technology adoption. In this classic application of the Bass model, market potential adopters flow to 

adopters through two primary mechanisms: adoption from external influences such as marketing and 

advertising, and adoption from internal influences or word of mouth. Table 1 provides a high level 

summary of the key inputs and outputs of BDCM. Table 1 provides a stock/flow diagram illustrating the 

causal influences underlying the BDCM model, along with typical examples of adoption S-curves.        

                                                           
4 Navigant Consulting, Inc.’s proprietary RE-SIM™ model that uses a discrete choice market share approach in conjunction with a 
calibrated Bass diffusion model to forecast the adoption of PV or other DER technologies. 
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Table 1. BDCM Key Inputs and Outputs 

Key Inputs Key Outputs 

• Technology cost and performance 
forecast 

• Electricity prices and utility offset rates 

• Utility incentives, state and federal tax 
credits 

• Historical installed capacity, building 
stocks, consumption 

• Market diffusion parameters and 
consumer sensitivity 

• Eligibility constraints (homeownership 
rates, PV access factors, etc.) 

• Levelized cost of energy 

• Levelized value of electricity 

• Price response curves 

• System-level technical and market 
potential forecast 

• Potential as a percentage of sales 

• Calibrated (through back-casting) 
market diffusion parameters 

 

1.2.3.2.1 Adoption Forecasting Model 

The adoption forecast model combines the BDCM model and the ML method to create additional value 

for customer analytics. This joint modeling approach augments the well-established discrete choice causal 

models that are largely driven by subject matter expertise, with additional adoption information that is 

automatically discovered through a data-driven and ML process. The net effect of this approach, depicted 

in Figure 2, provides a more accurate market potential estimate, along with additional insights gained 

from customer-specific adoption propensities. The synthesis of ML and BDCM occurs through fine-tuning 

the long-run market share calculations in BDCM with ZIP code-level customer characteristics from ML. 

More specifically, the non-economic attributes are further delineated by the important attributes 

identified by ML. 

1.2.3.3 Outcome 

The results of this framework identification solidified the approach used for the demonstration and 

identified key inputs and outputs of the model. 

Figure 2.  Adoption Forecasting Methodology for SDG&E 
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1.2.4 Subtask 3.3: Demonstration  

1.2.4.1 Objective  

The goal of this task was to demonstrate the methodology framework developed using San Diego Gas & 

Electric (SDG&E) data. 

1.2.4.2 Approach 

1.2.4.2.1 Demonstration Use Case  

As a use case, the project team forecasted solar PV adoption at a ZIP code level, for all ZIP codes specific 

to SDG&E (118 ZIP codes). Specifically, the project team utilized the California Distributed Generation 

Statistics Currently Interconnected Data Set [21], with App Received Date serving as the proxy for the 

installation date of the net energy metered (NEM) systems. The project team modeled solar PV adoption 

for the residential sector in each of the applicable ZIP codes over a 20-year time horizon (1998-2017). The 

ML analysis identified the key customer attributes that factor most prominently into PV adoption, 

accounting for all NEM installations across the investor-owned utility (IOU) territories in California. Using 

the larger dataset for the ML component of the analysis, as opposed to only the SDG&E ZIP codes, 

facilitated a better understanding of which customer attributes factor most prominently into adoption of 

solar PV. This is because it provides additional variation in the candidate model covariates for the ML 

models to train on from the more than 1,000 additional ZIP codes in the Southern California Edison (SCE) 

and Pacific Gas & Electric (PG&E) service territories. 

1.2.4.2.2 Data Sources  

The demonstration use case does not rely on any granular or customer-level data from SDG&E. Rather, 

the project team utilized publicly available data in concert with data from other studies conducted by the 

project team in other jurisdictions, which, in some cases, may be proprietary. Any proprietary data 

utilized demonstrated the methodology and output but was not provided in raw form to SDG&E as part of 

any deliverable. Table 2 provides a list of the public data used for this demonstration.  
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Table 2. Public Data Sources Used for this Demonstration 

Data Source Usage in Model 

Solar PV Net 
Metering 
Interconnection  

California Distributed Generation Statistics, 
http://www.californiadgstats.ca.gov/downloads/  

To calibrate diffusion and market 
share parameters and to 
compare historical adoption5 
with simulated adoption 

Residential Load 
Profiles 

US Department of Energy, Open EI, 
https://openei.org/doe-
opendata/dataset/commercial-and-residential-
hourly-load-profiles-for-all-tmy3-locations-in-the-
united-states  

Not used in the model—used to 
calculate residential offset rate 
in SDG&E territory 

Solar PV System 
Production 

NREL, System Advisory Model, 
https://sam.nrel.gov/  

Not used in the model—used to 
calculate residential offset rate 
in SDG&E territory 

American 
Community 
Survey 

US Census Bureau, https://factfinder.census.gov/ 

To compile ZIP code-level 
demographic attributes, which 
served as candidate covariates in 
the ML models 

2010 Decennial 
Census 

US Census Bureau, https://factfinder.census.gov/ 
To estimate households by ZIP 
code 

California Energy 
Commission 

Building Climate Zone by ZIP Code, 
http://www.energy.ca.gov/maps/renewable/ 
BuildingClimateZonesByZIPCode.pdf 

To map climate zones to ZIP 
code 

State of California 
Dept. of Finance 

P1: State Population Projections (2010-2060), 
http://www.dof.ca.gov/Forecasting/Demographic
s/projections/ 

To forecast 2010 Census Data 
through the 2017 calibration 
period 

 

1.2.4.2.3 Parameter Development 

The project team determined which model parameters/coefficients were assumed to be fixed versus 

which parameters were solved for using available data to calibrate the model (e.g., using nonlinear 

optimization techniques). The project team estimated key model parameters by leveraging information 

from other analyses, publicly available data, and proprietary datasets regarding customer attributes in 

each ZIP code. The project team approach for estimating key model parameters is detailed in the 

following sections.  

Key Customer Attributes 

In this project, the primary purpose of ML was to discover the most important attributes that drive PV 

adoption at the ZIP code aggregate level. The project team tuned the model settings to distill the 

attributes that were most important for defining PV adoption propensity, along with the structural 

relationship between those attributes. ML models in the CART family are well-suited for this project 

because it is not well known which consumer attributes are associated most with PV adoption. ML 

                                                           
5 The team used the Application Received date for the time field, though future analysis should use the Application Complete date, 
which is time lagged by about a month relative to the Application Received date.  

http://www.californiadgstats.ca.gov/downloads/
https://openei.org/doe-opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
https://openei.org/doe-opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
https://openei.org/doe-opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
https://openei.org/doe-opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
https://sam.nrel.gov/
https://factfinder.census.gov/
https://factfinder.census.gov/
http://www.energy.ca.gov/maps/renewable/BuildingClimateZonesByZIPCode.pdf
http://www.energy.ca.gov/maps/renewable/BuildingClimateZonesByZIPCode.pdf
http://www.dof.ca.gov/Forecasting/Demographics/projections/
http://www.dof.ca.gov/Forecasting/Demographics/projections/
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algorithms are an efficient means for discovering those attributes, especially when missing values are not 

prevalent in the analysis of the ZIP code-level data. Random forest ensemble modeling offers robust 

identification of the most important attribute drivers compared with single models that risk overfitting to 

the data. The suitably large number of ZIP codes in California IOU territories makes the subsampling 

aspect of the random forest algorithm appropriate.  

The project team used random forest ML models in this demonstration, where each tree in the forest is 

an instance of a regression tree for predicting the proportion of customers in a ZIP code that have net 

meters installed for PV systems, a continuous variable. These trees are trained from historical adoption 

data, discovering correlations between adoption and a pool of input features derived from a fusion of 

Census Bureau and project team customer attribute data (e.g., demographics, psychographics, premise 

physical characteristics, and financials).  

Figure 3 illustrates the prediction from multiple trees in an ensemble being aggregated and reconciled 

into a single estimate. 

Figure 3. Ensemble Model: Example for Regression 

 

 

Adoption Parameters  

Estimating PV adoption using the enhanced Bass diffusion model can be broken into two parts:  

calculating long-run market share and the rate at which the long-run market share is achieved over time. 

The left graph in Figure 4 illustrates two adoption profiles approaching the same long-run market share 

but at different rates of diffusion, which are governed by the p and q parameters of the Bass diffusion 

model (there are also referred to as marketing effectiveness and work of mouth strength in the BDCM 

adoption model). In contrast, the right graph in Figure 4 illustrates two adoption profiles with different 

long-run market share but constant rates of diffusion (i.e., constant Bass diffusion coefficients).  
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Figure 4. Illustrating Difference Between Rate of Diffusion and Long-Run Market Share 

 

Unless the population is sufficiently far along in the adoption S-curve (e.g., past the inflection point of 

adoption), it is typically impossible to simultaneously estimate both the long-run market share and the 

Bass diffusion coefficients using historical data alone. This is because an infinite combination of 

coefficients tends to yield equally good data fits. As such, one must typically fix one set of parameters 

while calibrating the coefficients of the other.  

The literature review revealed multiple cases that utilized a fixed functional format for calculating long-

run market share (informed through a combination of means, including but not limited to discrete choice 

analysis), typically using a logit market share model. The project team calibrated the Bass diffusion 

coefficients of marketing effectiveness and word of mouth strength (the p and q in the Bass model) 

through nonlinear optimization techniques to achieve the best possible fit for simulated and historical 

adoption. Figure 5 is for demonstration purposes only and illustrates a diffusion coefficient calibration, 

showing a close fit between historical adoption and simulated adoption in the residential sector of a 

utility service territory. This calibration process entailed adjusting Bass diffusion coefficients through 

nonlinear optimization to minimize the absolute value of the difference between simulated and actual 

adoption totaled over each month of the simulation forecast.  
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Figure 5. Illustration of a Calibration of Bass Diffusion Coefficients – Comparison of Actual Historical 

vs. Model Simulated Adoption 

 

In this demonstration, the project team was primarily interested in fine-tuning the long-run market share 

calculations to facilitate obtaining a more granular forecast of spatial adoption, in this case by ZIP code. 

The project team sought to maximally leverage information obtained through similar studies conducted 

by the project team in California and Arizona and to calibrate coefficients of the logit long-run market 

share model and the diffusion model. The approach seeks to marry the granular data and ML methods 

with causal Bass diffusion modeling without having to resort to more costly analysis approaches such as 

executing customer discrete choice analysis surveys. The survey approach could be used in future 

analyses to facilitate independent estimation of both the long-run market share parameters and the Bass 

diffusion coefficients; however, it was outside the scope of this demonstration. 

Logit Long-Run Market Share Coefficients  

The functional format of the binary logit model used to estimate long-run adoption of solar PV in a utility 

service territory is illustrated in Equation 1.  

Equation 1. Binary Logit Market Share Model 

𝐿𝑜𝑛𝑔 𝑅𝑢𝑛 𝑆𝑜𝑙𝑎𝑟 𝑃𝑉 𝑀𝑎𝑟𝑘𝑒𝑡 𝑆ℎ𝑎𝑟𝑒 =  
1

1 + 𝑒(𝛼+ 𝛽 ∙𝑃𝑟𝑖𝑐𝑒 𝑅𝑎𝑡𝑖𝑜)
 

 

Where, the price ratio was calculated to be the ratio between the lease rate, or PPA rate—typically 

calculated as a levelized cost of electricity (LCOE)—that could be offered by a TPO of a PV system and the 

utility’s electricity offset rate for a customer with a PV system installed.6  

                                                           
6 Utility offset rates ($/kWh) are defined as the dollar value of a customer’s bill reduction for each kilowatt-hour generated by the 

customer’s solar system. It is the amount of their bill that is offset for each kilowatt-hour generated (hence the term). In other 

words, it is the amount a customer saves on their utility bill. 

 

For Illustration Only 
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The shape of the above logit market share model was like the illustrative graphic, demonstrating three 

separate β coefficients.  

Figure 6. Logit Market Share Model  

 

In this demonstration, the project team utilized a logit market share model by expanding the α 

coefficient, sometimes referred to as an alternative specific coefficient, to include the top four to six 

customer attributes identified by the project team’s ML analysis.  

Thus, the project team further disaggregated the α coefficient (sometimes referred to as an intercept 

term) as follows in Equation 2, holding the price coefficient constant.  

Equation 2. Disaggregation of the Intercept Term 

∝  = ∝𝟎+ ∝𝟏 ∙  𝑨𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝟏 +   ∝𝟐 ∙  𝑨𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝟐 + ∝𝟑 ∙  𝑨𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝟑 + ⋯ 

 

The project team applied statistical methods to calculate the best fit for each of the disaggregated α 

coefficients using the combination of the following by ZIP code: historical adoption, number of 

households, aggregate customer attributes (e.g., median income), and a scaling factor (calculable using 

the fixed Bass diffusion parameters). The team used these to account for how far along on the adoption S-

curve each ZIP code should theoretically be as a percentage of maximum adoption.  

1.2.4.3 Outcome 

The outcome of the demonstration is detailed in Section 2.  

 

                                                                                                                                                                                               
 

For Illustration Only 
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1.2.5 Subtask 3.4: Disadvantaged Communities Analysis 

1.2.5.1 Objective  

The goal of the DAC demonstration was to conduct ML analytics on DAC ZIP codes, model DAC ZIP code 

solar propensity to adopt and compare the results to non-DAC ZIP codes in California.  

1.2.5.2 Approach 

1.2.5.2.1 Disadvantaged Community Definition 

Disadvantaged Communities (DAC) are communities designated by CalEPA, pursuant to Senate Bill 535, 

using the California Communities Environmental Health Screening Tool (CalEnviroScreen). DAC are 

identified by census tract and include the tracts that scored at or above 75% in the 3.0 version of the 

CalEnviroScreen that is available at the time of the EPIC application. [22] For the purposes of this analysis, 

the project team defined a DAC ZIP code as a ZIP code where >50% of the population lives in census tracts 

with a CalEnviroScreen 3.0 score > 75%. Using the SB 535 Disadvantaged Communities List, 255 ZIP codes 

in California meet this criterion; however, only two of these ZIP codes were in SDG&E territory, requiring 

this analysis to be conducted at the state level.  

1.2.5.2.2 Data Sources  

The DAC demonstration use case used the same data that was used in the prior subtask, with the 

additions provided in Table 3.  

Table 3 Additional Public Data Sources Used for DAC Demonstration 

Data Source Usage in Model 

List of 
Disadvantaged 
Communities  

http://www.energy.ca.gov/commission/diversity/
definition.html 

Used to determine DAC and non-
DAC ZIP codes for ML, statistical 
and propensity to adopt analysis.  

 

1.2.5.2.3 Parameter Development 

For the DAC analysis, the project team determined which model parameters/coefficients were assumed 

to be fixed versus which parameters were derived using available data to calibrate the model (e.g., using 

nonlinear optimization techniques). Key model parameters were estimated by leveraging information 

from other analyses, publicly available data, and proprietary datasets regarding customer attributes in 

each ZIP code. The approach for estimating key model parameters is detailed in the following sections.  

Key Customer Attributes 

In the DAC analysis, the primary purpose of ML was to discover the most important attributes that drive 

solar PV adoption at the ZIP code aggregate level, specifically within DAC-designated ZIP codes.  Since 

there were only two ZIP codes in SDG&E territory with a DAC population >50%, the project team applied 

its ML models to the 171 DAC ZIP codes in the IOU service territories with Census Bureau demographics 

data were available.  As with the primary analysis unrestricted to DAC ZIP codes, CART and random forest 

ensemble models were used to distill the attributes most strongly linked to PV adoption percentage at 

the ZIP code level.   
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Statistical Analysis 

The project team ran statistical analyses on the key customer attributes to gain insight into the 

differences in these attributes in DAC versus non-DAC ZIP codes. Specifically, the team tested the mean 

difference of the attribute value for statistical significance, and compared the distribution of the 

attributes across the DAC and non-DAC ZIP codes. In addition, the team also analyzed the percentage of 

owner occupied homes, and solar PV market share.  

Adoption Parameters  

The project team employed the same diffusion modeling methodology for the DAC analysis as described 

in Sections 1.2.3 and 1.2.4. While the construct was the same, the region analyzed differed in that it 

included all California ZIP codes for which data were available, as opposed to limiting the analysis to the 

SDG&E service territory. The primary reason for expanding the analysis region was to provide an 

adequate sample size for both DAC and Non-DAC ZIP Codes (SDG&E’s service territory only has twos ZIP 

codes that met the DAC definition outlined in Section 1.2.5.2.1.). Additionally, the optimization of 

diffusion parameters aggregated applicable ZIP code adoption data to provide two sets of parameter 

estimates – one for the aggregation of all DAC ZIP codes and one for the aggregation of all non-DAC ZIP 

codes. 

1.2.5.3 Outcome 

The outcome of the DAC demonstration is detailed in Section 2.  

1.2.6 Task 4 – Conduct Data Analysis and Develop Findings and Recommendations 

1.2.6.1 Objective:  

Conduct data analysis and develop findings and recommendations.   

1.2.6.2 Approach 

The project team performed data analysis and developed results and recommendations on next steps as 

outlined in Section 4 of this report.  

1.2.6.3 Output  

Data analysis, findings and recommendations, as provided in Section 3 and Section 4 of this report.  

1.2.7 Task 5 – Final Report 

1.2.7.1 Objective  

Aggregate all findings and compile it into a comprehensive report. 

1.2.7.2 Approach 

Develop a comprehensive final report based on an agreed-upon outline developed by the team.  The 

project team used results from the demonstration and data analysis to develop the final report.  The 

report was prepared as a draft for review by project stakeholders and then revised into final form, based 

on the review comments. 
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1.2.7.3 Output 

Comprehensive final report as presented in this document. 

2. Results and Analysis  

2.1 Demonstration Activity Results and Analysis 

The following sections detail the results of each stage of the demonstration activity. As noted in Section 

1.2.3, the demonstration plan included the analysis of PV adoption in all ZIP codes across the three 

California IOU service territories to provide approximately 10 times the ZIP codes of data to train the 

models that would then be applied to the 118 ZIP codes in the SDG&E service territory. 

2.1.1 Customer Attributes Driving Adoption  

The project team conducted ML modeling to identify the most important attributes driving adoption at 

the ZIP code level. This analysis included compiling the analysis data and fitting it to a random forest ML 

model. 

2.1.2 Data Compilation 

The project team imported solar PV interconnection data using the California Distributed Generation 

Statistics (DGStats) NEM interconnections database. [23] This dataset contains a record for each individual 

NEM solar PV install for customers in all IOU territories (e.g., SDG&E, SCE, and PG&E), using the ZIP code 

as the most granular customer identifier. The project team filtered the dataset to include only residential 

customers. The team then aggregated the data to the ZIP code level by month and year for the granular 

adoption analysis and cumulatively over all the years for the customer attribute analysis.  

The project team leveraged demographics and physical attributes available from the US Census Bureau at 

the ZIP code level, incorporating climate zone identifiers at the ZIP code level from the California Energy 

Commission to account for weather differences. In total, the team assembled approximately 100 

covariates for use in the ML modeling process. 

The team converted total NEM installs by ZIP code into the proportion of households to establish a 

common analysis basis across the ZIP codes, which vary by size. This necessitated identifying ZIP codes 

that make up the three IOUs in the state to account for ZIP codes without any NEM installs in the DGStats 

database. The final data preparation step involved filtering the data to include customer demographic 

data in only those ZIP codes where data is readily available across all fields. The resulting dataset covered 

1,248 out of 1,659 ZIP codes represented in the DGStats database and 116 of 118 ZIP codes specific to 

SDG&E’s service territory, as presented in Figure 7. These data represented roughly 12 million homes in 

California and 1.4 million homes in SDG&E’s service territory. The two ZIP codes in the SDG&E territory 

without an estimate did not have any residential households, according to Census data. 
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Figure 7. NEM Installation Percentage by ZIP Code 

 

Next, the project team aggregated system installation data by month of install to enable modeling over 

time rather than for the current snapshot through 2017, as was done for the ML modeling. Figure 8 shows 

the aggregate adoption data for the 1,248 ZIP codes modeled in California and the 118 ZIP codes modeled 

in SDG&E’s service territory, both on an incremental (i.e., new installations per month) and cumulative 

megawatt installed basis, including data through the first quarter of 2017.  
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Figure 8. Incremental and Cumulative MW Installed in Modeled ZIP Codes – Demo Results7 

 

2.1.3 Random Forest Model 

The project team fit a random forest model consisting of individual CART models applied to each of 500 

random subsets of the analysis dataset of California ZIP code NEM installation data and corresponding 

covariates. The project team chose to use 500 random subsets, which was determined to be sufficient 

because additional subsamples showed diminishing value to the explanatory power of the model. The 

resulting model accounted for 48% of the variation in the ZIP code-level proportion of NEM installations 

across the IOUs and 76% of the variation for the SDG&E ZIP codes.  

Figure 9 depicts the random forest error distribution for estimating the proportion of households with 

NEMs for PV system installations—i.e., the error of the ML model to the actual DGStats data. The green 

curve shows the distribution of the estimation error for the SDG&E ZIP codes, and the black curve shows 

the estimation error distribution for other IOUs in California. For both the SDG&E and other IOU ZIP codes, 

the error distribution is tightly centered around zero.  

 

                                                           
7 Historical installation data aggregated from DGStats.com, filtered to include only residential installations. 
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 Figure 9. Random Forest Estimation Error Distribution for Percentage of Households with NEM 

Installations 

 

Table 4 details the numerical summary of the error distribution shown in Figure 9. For SDG&E, a slight 

skew toward underestimating NEM installation proportions occurs, as both the mean and median were 

less than zero. Of SDG&E ZIP codes, 50% had NEM installation percentage estimates between -2.8% and 

0.8% of the true installation percentage.  

Table 4. Random Forest Estimation Error Quartiles and Mean Percentage of Households with 

NEM Installs 

Utility ZIP 
Codes 

Min 1st Quartile Median Mean 3rd Quartile Max 

SDG&E  -12.0% -2.8% -0.6% -1.1% 0.8% 6.8% 

Non-
SDG&E 

-57.6% -1.0% 0.5% 0.2% 1.9% 19.5% 

 

While the 76% reduction in the NEM percentage variance in SDG&E ZIP codes was an important validation 

for the random forest model goodness of fit, the primary purpose for the random forest model in this 

project was to isolate the most significant ZIP code-level drivers for estimating NEM adoption percentage.  

The project team examined the variable importance measure from the random forest model, shown in 

Figure 10. The variable importance in the x-axis of the plot, labeled IncNodePurity, is the relative 

degradation in model precision associated with the removal of the listed model covariate. Figure 10 shows 

six attributes, enclosed by the green box, that stick out significantly to the right; as a result, these were 

determined to be the most important attributes estimating ZIP code-level PV NEM adoption.  
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Figure 10. Variable Importance Plot – Estimating Percentage of NEM Installation Households 

 

 

These attributes correlate to varying degrees with the approximately 100 candidate covariates, of which 

the top 30 in terms of importance are shown in Figure 10. The six attributes in the green box in Figure 10 

and listed in Table 5 in order of most to least important were the most predictive for estimating NEM 

percentage.  

Table 5. Key Customer Attributes 

Key Customer Attributes 

Average number of credit mortgage type inquiries in 
the last 12 months 

Climate zone 

Percentage of households that are married families 

Average balance on an open auto loan and lease trades 
reported in the last 6 months 

Average household size 

Percentage of owner-occupied housing units 

 

2.1.4 Granular Adoption Analysis 

This section presents the results of analysis that explores the ability of the project team’s causal model to 

replicate historical adoption profiles, which provide a greater level of confidence that such a model may 

provide reasonable forecasts moving forward. This section provides a description of a three-step analysis 

process, each of which improves the ability of the causal model to replicate historical adoption at a 

granular level (e.g., ZIP code level).  

IncNodePurity 
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2.1.4.1 Aggregate Adoption Analysis – Statewide Coefficients 

The project team began the adoption analysis by first running a nonlinear optimization to solve for the 

best fit of its model parameters for adopting data in SDG&E’s service territory. The project team estimated 

the two parameters (marketing effectiveness and word of mouth, or the p and q in the Bass model) that 

would drive long-run (equilibrium) adoption in the logit market share model (discussed in Section 1.2.3), 

assuming a historical price ratio of 0.8 over the historical period simulated. While this is a somewhat 

simplified assumption, evidence suggests that TPOs tend to price leases and PPAs based on prevailing 

electricity rates, and that they have been able to historically price below utility electricity rates since 

introducing the TPO business model. [24] Initially, the plan was to hold the Bass diffusion parameters 

constant in accordance with values the team has estimated from other studies. However, the adoption 

data suggests that the market may be past the inflection point of the typical S-curve adoption profile, 

which means that more information is available to estimate diffusion parameters than originally 

anticipated. Through a calibration process, the project team independently estimated the two Bass 

diffusion parameters (p and q in the classical model, or advertising effectiveness and word of mouth 

parameters in the team’s BDCM model), in addition to the parameters governing the long-run market 

share. All parameters in this step of the analysis were held constant across all ZIP codes modeled, though 

the team did back-cast historical adoption for each ZIP code.  

The project team obtained an excellent fit of the data when aggregated across all ZIP codes, both on a 

cumulative megawatt installed basis and on an incremental monthly installation basis. Figure 11 provides 

a graphical view of the model simulated adoption compared with the actual adoption data gathered from 

the DGStats database. This result suggests that the Bass diffusion modeling approach is well-suited for 

analyzing the adoption of solar PV in the residential market, whose dynamics of market growth and 

saturation appear to be consistent with those observed with numerous other successful product 

deployments.  

Figure 11. Model Simulated vs. Actual PV Installed – Statewide Coefficients Only 

 

The project team noted that to obtain the strong fit seen above, it added an additional dynamic into the 

Bass model. Specifically, the team permitted the word of mouth parameter to grow over time, which 

results in a somewhat steeper (or super-exponential) growth profile. Using only a single, constant value 

for this parameter resulted in a flatter bell curve of incremental adoption and did not fit the data as well. 

The implications of this model modification are that the positive feedbacks that tend to generate the 

exponential growth early in the adoption cycle have been accelerating over time. Such positive feedbacks 
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include the word of mouth effect but are not limited to that feedback since the model fit will effectively 

load onto this single parameter any other positive, or reinforcing, feedback that exists in the actual market 

dynamics. With the growth of social media over the last decade, it is reasonable to believe that this social 

networking parameter has indeed grown over time. Considering the limited scope and timeframe of the 

project, the team does not assert that this is the only mechanism by which a super-exponential type of 

growth dynamic could be caused. 

Because forecasting adoption at a more granular level than the entire residential sector was a focus of this 

project, the model included a back-cast of adoption for each of the 118 ZIP codes the team modeled in 

SDG&E’s service territory. However, without introducing additional model parameters to explain observed 

variance in adoption across ZIP codes, the project team did not anticipate getting a tight back-cast fit 

when disaggregating to the ZIP code level. Figure 12 shows the model simulated versus actual cumulative 

megawatts of adoption from January 2009 through March 2017 for each of the 118 ZIP codes modeled. As 

seen in this figure, where each data point represents a different ZIP code, substantial noise exists in the 

adoption back-cast at the ZIP code level. A better data fit would show each data point falling along the 

diagonal of the graph, if simulated and actual adoption were closely correlated. 

Figure 12. Simulated Cumulative Adoption (2009-2017) for all 118 SDG&E ZIP Codes – Statewide 

Coefficients Only (Held Constant Across All ZIP Codes) 

 

The above results warrant the addition of model parameters to better explain the variance from ZIP code 

to ZIP code.  

2.1.4.2 Granular Adoption Analysis – Incorporating Customer Attributes 

The next step of the team’s analysis entailed incorporating the customer attributes calculated in the ML 

analysis described in Section 2.1.1. Observation of ZIP code-level adoption data suggested that long-run 

market share across ZIP codes varied more substantially than the rate of diffusion that would be governed 

by the Bass diffusion parameters (advertising effectiveness and word of mouth). As a result, the project 
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team held these diffusion parameters constant across all ZIP codes and incorporated customer attribute 

coefficients into its logit market share model, which effects the calculation of long-run market share.  

As discussed in Section 1.2.3, the team expanded the two-parameter logit market share calculation into 

Equation 3 

Equation 3. Adding Customer Attribute Coefficients to the Long-Run Market Share 

Pr

1
_

1
ZipCode ZipCode iceRatio

LongRun MarketShare
e
 




 

Where, 

lim1 2* 2 3* 3 4* 4 5* 5ZipCode C ateZone ZipCode ZipCode ZipCode ZipCodea a attribute a attribute a attribute a attribute     

 

The above function effectively resulted in a logit market share calculation having the following number of 

coefficients:  

• Price coefficient (β): One global price coefficient 

• Climate zone-specific coefficients (a1): 16 coefficients, one for each climate zone in California  

• Customer attribute coefficients (a1-a5): Five coefficients, one for each of the five key customer 

attributes, the value of which varies by ZIP code:  

o attribute2ZIPCode = Average number of mortgage-type credit inquiries in the last 12 months   

o attribute3ZIPCode = Percentage of households that are married families  

o attribute4ZIPCode = Average balance on open auto loan and lease trades reported in the last 

6 months 

o attribute 5ZIPCode = Average household size 

The last key customer attribute identified in the ML analysis was the percentage of owner-occupied 

housing units. The project team accounted for this parameter more directly by calculating an eligible 

homes value, which only included owner-occupied homes and the calculated fraction of customers (by ZIP 

code) whose credit score exceeded 680, a typical value assumed to qualify for a solar PV lease or PPA.  

To estimate the values of the above coefficients, the project team conducted a logit regression analysis by 

transforming the long-run market share equation into a linear function, permitting linear regression of 

each of the coefficients. The team calculated the market share input for the regression by applying a 

scaling factor against the actual market share that was a function of the best-fit diffusion parameters from 

the prior step in the analysis.  

After calculating the coefficients of the logit market share equation, the project team employed a 

nonlinear optimization to re-calculate the global (i.e., constant across ZIP codes) diffusion coefficients, 

which the team expected to be different from the prior analysis because the calculation of long-run 

market share has changed with the additional coefficients in the calculation.  
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The analysis results again show a strong fit of incremental and cumulative adoption from 2009 through the 

first quarter of 2017, as illustrated below in Figure 13.  

Figure 13. Model Simulated vs. Actual PV Installed – Adding Customer Attribute Coefficients 

 

The project team again plotted the simulated versus actual cumulative adoption from January 2009 

through March 2017, as seen in Figure 14. Comparing this figure with Figure 13, a better correlation 

emerged between the simulated and actual adoption forecasted at the ZIP code level, yet considerable 

variance between simulated and actual still exists. Adding the customer attribute coefficients reduces the 

value of the objective function8 for the parameter fitting optimization by roughly 33%.  

Figure 14. Simulated Actual Cumulative Adoption (March 2017) for all 118 SDG&E ZIP Codes – Adding 

Customer Attribute Coefficients 

 

                                                           
8 The objective function in the parameter fit is the sum of the absolute value of the difference between simulated and actual 
cumulative adoption of each ZIP code summed over every month of the simulation and over all ZIP codes.  
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2.1.4.3 Granular Adoption Analysis with ZIP Code-Specific Parameters 

While adding customer attributes to the long-run market share calculation somewhat improved the fit at 

the ZIP code level, sufficient variance still exists to warrant further exploration of model parameters. 

When almost every ZIP code analyzed appears to be past the inflection point of adoption, adding another 

parameter to the market share calculation specific to each ZIP code should provide an even better fit at 

the ZIP code level. Addition of such granular parameters can be risky when little information is known 

about the S-curve adoption profile and can result in poor long-run market share forecasts when early in 

the adoption curve. In these cases, a danger of overfitting the model exists, resulting in a false sense of 

security regarding the forecasting accuracy based on past data fits. However, once past the inflection 

point of adoption, this risk diminishes greatly, as the shape of the S-curve and of the incremental adoption 

data indicates the ultimate market saturation value.  

In theory, with sufficient historical data for each ZIP code, one could fit all the parameters of the model to 

the data, resulting in ZIP code-specific parameters for both the long-run market share calculations and for 

the coefficients governing the rate of diffusion (the shape of the S-curve). However, these optimizations 

take time to perform, especially when conducting them across 118 ZIP codes in SDG&E’s service territory. 

Additionally, ensuring a good fit of the data is sometimes an iterative process, involving the addition of 

constraints or tightening the upper and lower bounds of the parameter estimates to ensure good 

parameter estimates. The reason for this is the inherent limitations of a nonlinear optimization, which 

uses gradient hill climbing techniques, which are prone to finding local optima as opposed to global 

optima. Considering the scope limitations of this project, the project team chose only to fit a single ZIP 

code-specific parameter, adding an a0 term to the calculation of long-run market (refer to Equation 2 for 

the original formula). For simplicity of code modification and to facilitate comparison of results, the 

project team added an a0 term to the original expression for the α term in lieu of replacing the entire α 

term with only a ZIP code-specific parameter. The results of the fit are the same in either case since the 

optimization of an alternate a0 term would effectively roll into it all the other terms in the α expression in 

a single, modified coefficient. In other words, the customer-specific attributes calculated in the prior step 

become redundant when one adds a ZIP code-specific parameter to the calculation of long-run market 

share.  

Equation 4. Disaggregation of Logit Coefficient 

lim0 1 2* 2 3* 3 4* 4 5* 5ZipCode ZipCode C ateZone ZipCode ZipCode ZipCode ZipCodea a a attribute a attribute a attribute a attribute         

Again, the results demonstrated an excellent fit of both incremental adoption and cumulative adoption 

when compared with the historical data, as shown in Figure 15.  
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Figure 15. Model Simulated vs. Actual PV Installed 

 

Looking at the results at the ZIP code level, however, there is a much better fit. Simulated cumulative 

adoption from 2009 through March 2017 aligns closely with actual historical adoption for nearly every ZIP 

code analyzed. These results can be compared with those presented in Figure 11 and Figure 13.  

Figure 16. Simulated vs. Actual Cumulative Adoption (in March 2017) for all 118 SDG&E ZIP Codes – 

Adding ZIP Code-Specific Coefficients 

 

Due to the construct of the optimization and the constraints imposed, the fit is best at the final timestep 

of the simulation. Greater variance exists between simulated and actual cumulative adoption at each 

timestep in the simulation. In Figure 17, where each data point represents an individual ZIP code in each 

month of the simulation from 2009 through 2017, additional variance is observed when inspecting the 

curve fits at all time periods of the simulation; however, in general, the simulated cumulative adoption fits 

the actual cumulative adoption very well.  
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Figure 17. Monthly Simulated vs. Actual Cumulative Adoption (January 2009 – March 2017) for all 118 

SDG&E ZIP Codes – Adding ZIP Code-Specific Coefficients 

 

Another way to inspect the data is to look at the simulated versus actual adoption over time for individual 

ZIP codes. Though showing this result for all 118 ZIP codes would be cumbersome, Figure 18 shows the 

goodness of fit of the simulated adoption with actual cumulative adoption for four typical ZIP codes. As 

shown in the figure, the simulated adoption aligns quite well with actual adoption over time even at the 

ZIP code level, though actual adoption data tends to be a bit less smooth when viewing at the individual 

ZIP code level (particularly for ZIP codes with smaller installation quantities) as opposed to summed over 

many ZIP codes. Though not all ZIP codes align as well as those illustrated below, these results are typical 

and reasonably consistent at the ZIP code level, though outliers do exist.  



31 
 

Figure 18. Simulated vs. Actual Cumulative Adoption over Time – ZIP Codes 92020, 91977, 91910, and 

91906  

 

 

Though each of the above adoption profiles results in a different long-run market share, the shape of the 

adoption (i.e., the shape of the S-curve, or the rate at which the long-run market share is approached) is 

reasonably consistent across ZIP codes. Again, outliers do exist, but for the most part, assuming a constant 

set of diffusion coefficients (i.e., p and q in the classical Bass model) across the service territory is a 

reasonable approximation.  

Figure 19 shows the incremental adoption per month for each of the above four ZIP codes. Whenever one 

views incremental data as opposed to cumulative data, the results are noisier, owing to the smoothing 

effect of integrating—or cumulating—data over time. That said, the project team still observes a strong 

correlation between simulated and actual adoption at the ZIP code level, even when comparing 

incremental adoption data. It should also be apparent that the characteristic rise and fall of incremental 

adoption, manifested as a somewhat bell-shaped incremental adoption curve, is visible at the ZIP code 

level, not just in aggregate across ZIP codes.  
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Figure 19. Simulated vs. Actual Monthly Incremental Adoption over Time – ZIP Codes 92020, 91977, 

91910, and 91906 

 

2.2 Disadvantaged Communities Results and Analysis 

The following sections detail the results the DAC demonstration activity.  

2.2.1 Customer Attributes Driving Adoption  

The project team conducted ML modeling to identify the most important attributes driving adoption at 

the ZIP code level, for DAC-designated ZIP codes. This analysis included filtering the compiled analysis data 

as described in Section 2.1.2 to only include those with DAC indicators and available attributes from the 

American Community Survey at the ZIP code level, and fitting the ML models. 

2.2.2 Data Compilation 

After filtering the California IOU territory ZIP code data, the resulting dataset included 171 out of 255 ZIP 

codes designated as DAC ZIP codes due to NEM data only being available in IOU territories and American 

Community Survey census data limitations.  The NEM installation penetration for the DAC ZIP codes is 

shown in Figure 20 in shades of blue from light (lowest percentage) to dark (highest percentage), with 

black signifying non-DAC ZIP codes or outside of the IOU service territories, and white signifying Census 

Bureau ZIP Code level attribute data were not available.   
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Figure 20. NEM Installation Percentage, by DAC ZIP Codes 

 

2.2.3 Machine Learning Models 

The project team fit a Conditional Inference Tree (CTree) model to the DAC-filtered set of California ZIP 

codes for estimating the NEM percentage, and found that it outperformed the random forest model in 

terms of variance explained, when fit on the full set of DAC ZIP codes and the full set of candidate 

predictor variables.  CTree models account for statistical distributional properties of candidate predictor 

variables when considering non-parametric splits, as opposed to recursive univariate splits used for the 

individual CART trees in a random forest. [25] 

The CTree model isolated four attributes most strongly linked to the NEM percentage in DAC ZIP codes, as 

shown below in Figure 21.  

The project team fed the attributes from the CTree model into a random forest ensemble model to 

quantify the variable importance and to test whether the importance order observed was consistent.  

Overall, the random forest model explained 53 percent of the variance in NEM installation percentage for 

the DAC ZIP codes.  The attribute importance order from the CTree was also observed in the random 

forest model, shown below.   
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Figure 21. Random Forest Attribute Variable Importance – DAC ZIP Codes 

 

 

Three of these four key explanatory attributes were also significant for the overall NEM Installation ML 

analysis, with only the percentage of manufactured housing units found to be significantly linked to 

predicting NEM installation within the DAC filtered list of ZIP codes. 

The figure below depicts the random forest error distribution for estimating the proportion of households 

with NEM installs for solar PV system installations—i.e., the error of the ML model to the actual DG Stats 

data, in the DAC ZIP codes. The black curve shows the estimation error distribution, centered on zero, and 

slightly left skewed, implying the random forest models had a slight tendency to under-state the NEM 

installation percentage.  
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Climate Zone

% Owner Occupied HH's

Average Credit/Mortgage Inquiries 12
months
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Figure 22. Random Forest Estimation Error Distribution for Percentage of Households with NEM 

Installations 

 

Table 6 details the numerical summary of the error distribution shown in Figure 22.  Approximately 50 

percent of the DAC ZIP codes were predicted within 0.1% of their true NEM installation percentage. 

Table 6. Random Forest Estimation Error Quartiles and Mean Percentage of Households with NEM 

Installs 

DAC ZIP 
Codes 

Min 1st Quartile Median Mean 3rd Quartile Max 

SDG&E  -5.7% -0.1% 0.0% 0.0% 0.1% 4.4% 

 

2.2.4 Statistical Analysis Results 

Figure 23 and Figure 24 depict the statistical analysis results as box and whisker plots. As illustrated below, 

owner occupancy is a key attribute explaining the difference in solar PV market share between DAC and 

non-DAC ZIP codes. The percentage of owner occupied homes is 63% for non-DAC ZIP codes. This is 

statistically different from the average home ownership in DAC ZIP codes of 50%.9 The solar PV market 

share as a percentage of total homes is 6% for non-DAC ZIP codes, versus DAC ZIP codes where solar PV 

market share is 4%, signifying a statistically different mean value. 

When analyzing the solar PV market share as a percent of owner occupied homes (the bottom right graph 

in Figure 23), the difference in average market share across DAC and non-DAC ZIP codes is still statistically 

significant; however, the distributions are more similar when only evaluating owner occupied homes. 

                                                           
9 Statistical significance is measured at the 90% confidence interval. 
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Figure 23. Percentage of Owner Occupied Homes and Market Share Attributes 

 

*Indicates that the means of the attribute between DAC and Non-DAC ZIPs are statistically different at the 90% 

confidence interval. 

As illustrated in Figure 24, the remaining four attributes are more similarly distributed between DAC and 

non-DAC and although statistically significant do not practically explain differences in adoption.  For these 

parameters, a higher value correlates with higher adoption levels for all attributes other than household 

size. Yet the positive correlation of the other parameters, particularly homeownership, overwhelms the 

solar PV adoption results.  

 



37 
 

Figure 24. Remaining Four Attributes 

 

*Indicates that the means of the attribute between DAC and Non-DAC ZIPs are statistically different at the 90% 

confidence interval; however, this does not signify that these attributes are drivers of differences between DAC and 

non-DAC. 

2.2.5 DAC vs. Non-DAC Adoption Analysis  

Comparing the model simulated with actual adoption data for DAC Zip codes and non-DAC Zip codes, one 

finds that both DAC and non-DAC data fit simulated results quite well, as illustrated below in Figure 25. 

Both categories again show the characteristic rise and fall of incremental adoption, resulting in S-shaped 

cumulative adoption that is similarly shaped across both categories. Differences in the rates of adoption or 

shape of the S-curve appear minor; however, one may notice a somewhat greater curvature in DAC 

incremental adoption in the 2015-2016 timeframe, possibly a result of the timing of the extension of the 

California Single Family Affordable Solar Housing (SASH) and Multi-Family Affordable Solar Housing 

(MASH) incentives. [26] As such, the non-DAC simulated results tend to fit the data somewhat more 

closely, though both sets of simulated results compare well with actual historical adoption.  



38 
 

Figure 25. Comparison of DAC and non-DAC Adoption: Simulated vs. Actual 

 

2.3 Assumptions 

The team made some specific assumptions:  

• Considered only credit score eligibility and homeownership in calculating suitability for 

installation, as opposed to further refining technical suitability of homes for solar PV (e.g., fraction 

of homes in each ZIP code with acceptable orientation, shading, etc.). 

• Utilized constant pricing undercut of leases/PPAs relative to prevailing electricity rates, as 

opposed to calculating or estimating pricing undercut differences over time. 

• Aggregated analysis to the ZIP code level rather than the customer unit level. 

• Defined a DAC ZIP code as a ZIP code where >50% of the population lives in census tracts with a 

CalEnviroScreen 3.0 score > 75%. 

• Did not use ZIP Codes without a direct 1:1 map with ZIP Code Tabulation Areas (ZCTAs) in the DAC 

analysis. The excluded ZIP codes were found in small population density areas within the IOU 

service territories, or had very few residential customers.  The Census Bureau does not publish 

demographics data for these ZIP codes to protect confidentiality.  
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3. Key Findings 

The following section presents the key project findings that were identified by the project team. The 

strength of aggregate and ZIP-code-level back-casts suggest that causal models can be used to forecast 

residential rooftop PV adoption moving forward with a reasonable degree of accuracy, even when the 

analysis is spatially disaggregated. Such methods could support integrated resource planning and a better 

understanding of likely solar PV installation location, facilitating transmission and distribution-level 

planning and analysis.  

As indicated by the demonstration results, the key findings of this project can be summarized as follows:  

• Causal models, when appropriately calibrated, can explain historical adoption patterns well. 

• The Bass diffusion construct employed in the project team’s BDCM can replicate historical 

adoption patterns for both cumulative and incremental solar PV adoption.  

• Preliminary results suggest that the adoption of residential solar PV in California and in the SDG&E 

service territory is past the inflection point in the characteristic S-curve of adoption.  

• ML techniques can help to explain historical adoption patterns and can reduce the variance 

between simulated and actual adoption when analyzed at a granular level. Importantly, these 

techniques confirmed existing assumptions (e.g. climate zone) and introduced new considerations 

(e.g. married family households). 

• The parameterization of the most important attributes through discrete choice modeling— are 

best suited to understanding drivers of individual customer adoption, which was beyond the scope 

of this demonstration 

• The rate of diffusion (i.e., the shape of the S-curve) is reasonably consistent spatially; the long-run 

market share appears to differ more substantially when analyzed at a granular level (e.g., at the 

ZIP code level).  

• ZIP code-level forecasts seem possible with reasonable accuracy, particularly when ZIP code-level 

adoption appears to be past the inflection point of S-curve adoption.  

• Market share solar PV as a percent of total homes is about 50% higher in non-DAC ZIP codes (6% 

vs. 4% market share).  

• Owner occupancy is a key attribute in explaining the differences between DAC and non-DAC solar 

PV market adoption. 

o When comparing PV adoption in only owner-occupied homes, market share solar PV is 

very similar between non-DAC and DAC ZIP codes (9% vs. 8%). 

o Differences in other attributes do not drive strong variance in solar PV market share 

across non-DAC and DAC ZIP codes. 

• Statewide analysis of Non-DAC and DAC ZIP codes generates close fit between simulated and 

actual. Although DAC ZIP codes have a lower penetration as a percentage of total homes, market 

share is closer as a percentage of owner occupied homes. 
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The project team views the outcome of this pre-commercial demonstration as a success because the 

demonstration activity results verify the capabilities of the methodology that was demonstrated. The 

ability of the methodology to forecast spatially was even more certain than expected at the outset of the 

project due to the DGStats installation data suggesting the market may be past the inflection point of the 

S-curve.  As DER penetration continues to grow, this project outlines how SDG&E and other utilities can 

leverage the methodology framework to help forecast the adoption of other DER in their jurisdictions.  
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4. Recommendations and Next Steps  

The project has demonstrated a set of methods and tools that could be used to estimate the propensity 

for customer adoption of a DER technology such as photovoltaics.  The project team recommends that 

SDG&E not commercially adopt these methods and tools at this juncture, without more foundational work 

being done first.  Based on the pre-commercial demonstration results and findings of this project, the 

following actions by SDG&E or other stakeholders are recommended as steps toward prospective 

commercial adoption of the demonstrated methods and tools. 

• Improve SDG&E’s existing zip-code based Bass diffusion technique with refinements for the long-

run market share parameters based on significant customer attributes. 

• Improve certain model inputs (e.g., historical PPA prices, kilowatt-hour production, technical 

suitability due to shading and orientation, price sensitivity, and correlation between 

homeownership and credit scores) and conduct additional research to determine whether the 

residential solar PV market in SDG&E territory is approaching saturation.  

o Refine estimate of suitable buildings in the SDG&E service territory 

o Refine price sensitivity to forecast future adoption under different price/policy scenarios 

o Add parameters at the ZIP code level (e.g., one or two of the diffusion parameters) to 

provide greater forecast accuracy at that level of granularity 

• Leverage the same or equivalent methodology to evaluate solar PV adoption for other specific 

segments of interest and potentially individual customer analysis, including but not limited to the 

following groups: 

o Commercial and industrial customers 

o Low-income customers building on the analysis done on DAC 

o Customers on distribution feeders that are capacity constrained or at risk for reverse 

power flow during peak PV generation hours 

• Adapt the methodology for use in forecasting adoption of other DER (e.g., solar + storage, storage, 

EVs) and conduct demonstrations in these areas. 

• Consider utilizing a customer discrete choice survey approach to facilitate independent estimation 

of both the long-run market share parameters and the Bass diffusion coefficients. 
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5. Metrics and Value Proposition 

5.1 Metrics 

The commercial adoption methodologies and tools for estimating propensity for customer adoption of 

photovoltaics will be impacted by the following metrics.  

• Potential energy and cost savings 

o Avoided customer energy use (kWh saved) – The use of tools to estimate customer 

adoption of PV would lead to understanding the contribution of electric load from PV 

systems, which in turn will provide the customers with reduced energy usage and 

economic savings. 

o Avoided procurement and generation costs – Accurate estimation of customer PV 

adoption rates would enable utilities to estimate the avoided cost to procure energy from 

sources that might be inefficient or contribute to environmental pollution. 

• Environmental benefits 

o GHG emissions reductions – Adoption of PV would lead to reduced emissions from fossil 

fuel based sources which would have to be used in absence of renewable resources like 

PV. 

5.2 Value Proposition 

The purpose of EPIC funding is to support investments in R&D projects that benefit the electricity 

customers of SDG&E, PG&E, and SCE. The primary principles of EPIC are to invest in technologies and 

approaches that provide benefits to electric ratepayers by promoting greater reliability, lower costs, and 

increased safety. This EPIC project contributes to these primary principles in the following ways: 

• Greater Reliability: More accurate DER forecasting techniques will be required as these 

technologies have a greater impact on SDG&E’s distribution system.  It has become evident 

through circuit load data that residential PV is now playing a role in daily load shapes.  To ensure 

the system is properly designed for future needs, PV adoption forecasts must be carefully 

analyzed to anticipate future electric system requirements and reduce the risk of outages. 

• Lower costs:  PV adoption will likely have a direct impact on the type and location of distribution 

system, and possibly, transmission system upgrades. Applying the most appropriate resources at 

the most beneficial locations will inherently keep costs lower than the alternatives. Improved 

forecasting methods should enable the allocation of those resources to be applied in the most 

appropriate way. 

• Higher consumer satisfaction: More accurate DER forecasting can improve consumers’ 

contribution through demand response management in the operation of a utility power system by 

reducing or shifting their electricity usage during peak periods in response to time-based rates or 

other forms of financial incentives.  
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6. Technology Transfer Plan 

6.1 SDG&E Technology Transfer Plans 

A primary benefit of the EPIC program is the technology and knowledge sharing that occurs both internally 

within SDG&E and across the industry. To facilitate this knowledge sharing, SDG&E will share the results of 

this project by announcing the availability of this report to industry stakeholders on its EPIC website, by 

submitting papers to technical journals and conferences, and by presentations in EPIC and other industry 

workshops and forums.  The results will also be shared internally through presentations to internal 

stakeholders.  

6.2 Adaptability to Other Utilities and Industry 

All successful product rollouts tend to follow an S-shaped adoption curve, and solar PV is no exception. 

The further a technology progresses along the S-curve, the more accurate adoption forecasts become. The 

project approach is readily adaptable to all other IOUs in California, with adoption patterns holding across 

most ZIP codes in the state. This approach to forecasting adoption can be utilized by other utilities for 

integrated resource planning and forecasting transmission and distribution needs. While this 

demonstration project leveraged public information, if the project team had customer-specific data, the 

granularity of the analysis could have been refined, possibly to the feeder and substation level under 

various scenarios and rate structures.  
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