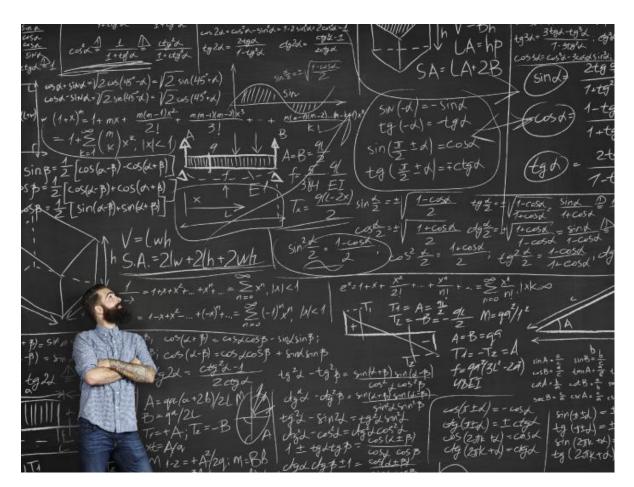


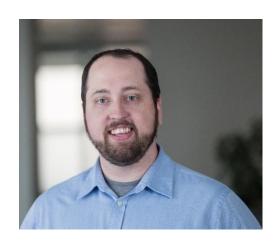
Calculating Lighting Solutions

James Donson, PE, LC, BEAP, MIES April 14, 2020



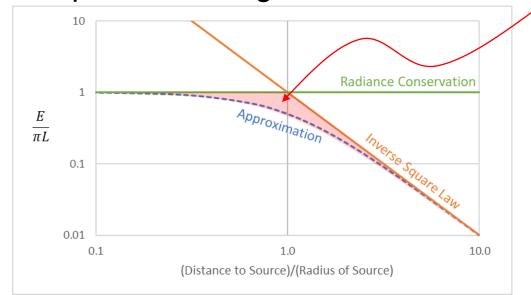
- No longer paper—online.
- Saves paper, easier to tabulate results.
- Just as important!
- Link emailed to you before noon.
- I'll provide time before final class wrap-up.

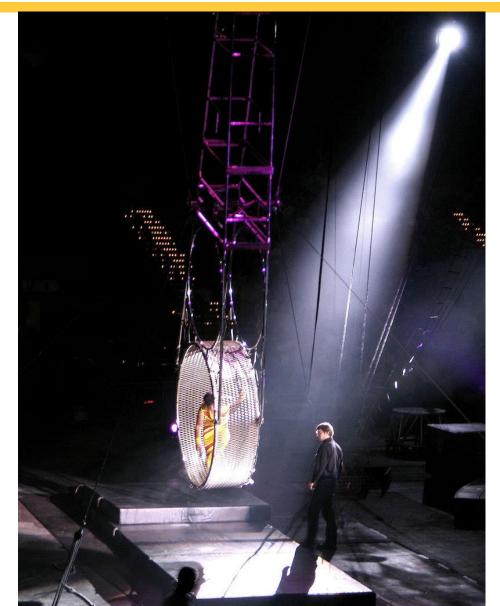
AGENDA


- Welcome & Safety Announcement
- Topics to Cover
 - Point Source Illuminance
 - Lumen Method
 - Computer-Aided Calculations

About your Speaker

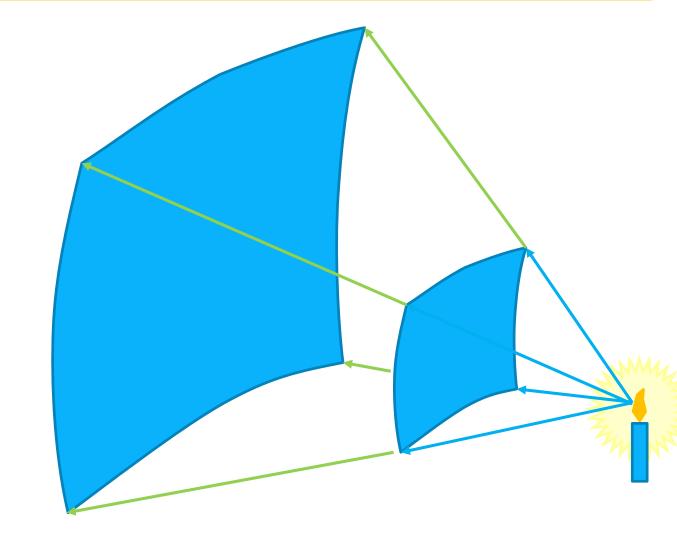
James Donson, PE, LC, BEAP


- BSME Cal Poly Pomona, 2008
- MIES & ASHRAE Member
- Board Member of IES San Francisco
- kW's Lighting Expert
- Diverse Project Load
 - Commercial & Industrial Audits/RCx
 - Lighting Research
 - New Construction Lighting/Electrical Cx
 - Lighting Buildouts
- ZNE Retro-fit & Advanced Lighting Tech. & Controls



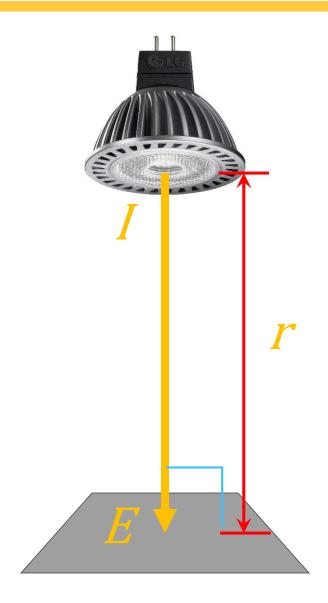
POINT SOURCE ILLUMINANCE

Point by Point Calculations


- Calculates illuminance at a point from a point source
- Valid when distance between light source and measurement exceeds 5 times the maximum dimension of the bright surface
 - Incorporates the light source error Error >1%

Inverse Square Law

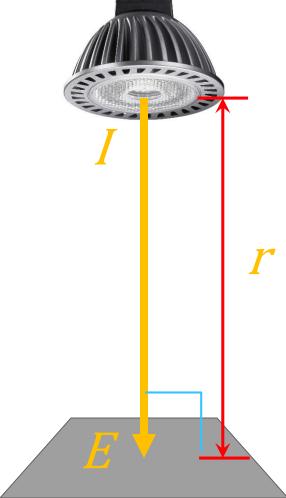
- Light obeys the inverse square law.
- Energy twice as far from a point source is spread over four times the area and is ¼ the intensity.
- Valid when distance between light source and measurement exceeds 5 times the maximum dimension of the bright surface


Inverse Square Law

Illuminance
$$(E) = \frac{\text{Intensity}(I)}{[\text{Distance}(r)]^2}$$

I = Intensity (candela)

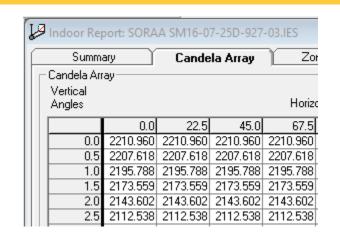
r = Distance (ft)


E = Illuminance (fc)

Point-source Illuminance Example

 Given a 100 cd source at 5 feet away, calculate the illuminance directly below the lamp.

$$I = 100 \text{ cd}$$
 $r = 5 \text{ ft}$
 $E = \frac{I}{r^2} = \frac{100 \text{ cd}}{(5 \text{ ft})^2} = \frac{100 \text{ cd}}{25 \text{ ft}^2}$
 $E = \boxed{4 \text{ fc}}$



Getting Intensity Data for Real Products

- Luminaire Cut Sheet
- Lamp Cut Sheet
- Photometric (.ies) file
- LM-79 Test Report

Verification Services

Project No.: 4786480425-3 Report No.: 4786480425-3a Report Issued Date: 2015-01-04

Model	#						
VIVID SE 04 SM16-07-1	00 0-	Produc Code	t CCT (K)	Beam Angle	CBCb	19100-	
SM16-07-36	D-927-03	00919 00931	2700	10	(Cd)	Equivalent	Total Flux (Lm)
		00943	2700 2700	25	5710 2260	50	300
SM16-07-25D-	930-03	00923	3000 3000	36 10	1070 6000	50 50	390 410

Test Report

ln	tens	ity D)ata	(cd)														
П		0	22.5	45	67.5	90	112.5	135	157.5	180	202.5	225	247.5	270	292.5	315	337.5	360
	0	2408	2408	2408	2408	2408	2408	2408	2408	2408	2408	2408	2408	2408	2408	2408	2408	2408
	1	2390	2390	2390	2390	2390	2390	2390	2390	2390	2390	2390	2390	2390	2390	2390	2390	2390
	2	2334	2334	2334	2334	2334	2334	2334	2334	2334	2334	2334	2334	2334	2334	2334	2334	2334
	3	2243	2243	2243	2243	2243	2243	2243	2243	2243	2243	2243	2243	2243	2243	2243	2243	2243
	4	2126	2126	2126	2126	2126	2126	2126	2126	2126	2126	2126	2126	2126	2126	2126	2126	2126
	5	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994
	6	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
	7	1725	1725	1725	1725	1725	1725	1725	1725	1725	1725	1725	1725	1725	1725	1725	1725	1725
	8	1576	1576	1576	1576	1576	1576	1576	1576	1576	1576	1576	1576	1576	1576	1576	1576	1576

Example #1 Point Source Display Lighting

You're lighting a small jewelry display with a 7-watt, 25° narrow flood MR-16 lamp.
 The lamp is positioned directly above the display, 7 feet away. What is the horizontal illuminance on the display?

Lamp Type	Base Type	Watts	PC	Description	Volts	Case Qty	MOL (in)	Lumens	СВСР	Color Temp.	CRI	Watt Replacement	Rated Life Hours L70	Dimmable	Energy Star	Location	Additional Info
MR16	GU5.3	5.5	35542	LED5.5DMR1684035	12	6	1.8	460	1100	4000	80	35W	25,000	Yes	*	Damp	Flood, 35° beam, White
400000			35535	LED5.5DMR1683035	12	6	1.88	420	1000	3000	80	35W	25,000	Yes	*	Damp	Flood, 35° beam, White
			35540	LED5.5DMR1682735	12	6	1.88	400	1000	2700	80	35W	25,000	Yes	*	Damp	Flood, 35° beam, White
111		7	35546	LED7XDMR16-22725	12	6	1.8	500	2350	2700	80	SOW	25,000	Yes	*	Damp	Flood 25° beam, White
			35543	LED7XDMR16-28325	12	6	1.8	500	2350	3000	80	50W	25,000	Yes	*	Damp	Narrow Flood, 25° beam, White
			35544	LED7XDMR16-28335	12	6	1.8	500	1350	3000	80	50W	25,000	Yes	*	Damp	Flood 35* beam, White
PAR30	MED	12	98755	LED12DP303W83035	120	6	3.66	950	2600	3000	80	75W	25,000	Yes	*	Damp	Flood, 35° beam, White, STIR
W			98811	LED12DP3L3W83035	120	6	4.61	950	2600	3000	80	75W	25,000	Yes	*	Damp	Accent, 35" beam, White, STIR
PAR38	MED	11	91360	LED11P38W830/25	120	6	5.04	950	4000	3000	80	90W	10,000			Wet	Flood, 25° beam, White, STIR
(2)		15	32213	LED15DP38W830/40	120	6	5.04	1300	2300	3000	81	90W	25,000	Yes	*	Wet	Flood, 40° beam, White, STIR

Example #1 Point Source Display Lighting

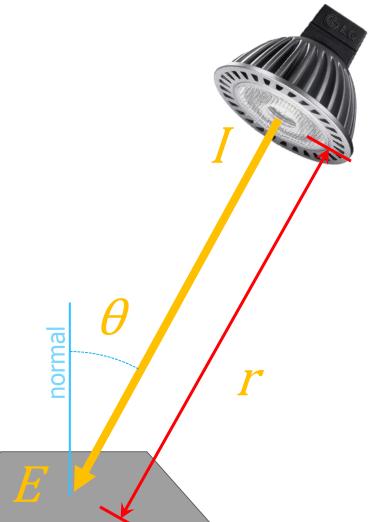
You're lighting a small jewelry display with a 7-watt, 25° narrow flood MR-16 lamp.
 The lamp is positioned directly above the display, 7 feet away. What is the illuminance on the display?

Lamp Type	Base Type	Watts	PC	Description	Volts	Case Qty	MOL (in)	Lumens	СВСР	Color Temp.	CRI	Watt Replacement	Rated Life Hours L70	Dimmable	Energy Star	Location	Additional Info
MR16	GU5.3	5.5	35542	LED5.5DMR1684035	12	6	1.8	460	1100	4000	80	35W	25,000	Yes	*	Damp	Flood, 35° beam, White
45000			35535	LED5.5DMR1683035	12	6	1.88	420	1000	3000	80	35W	25,000	Yes	*	Damp	Flood, 35" beam, White
			35540	LED5.5DMR1682735	12	6	1.88	4/00	1000	2700	80	35W	25,000	Yes	*	Damp	Flood, 35° beam, White
777		7	35546	LED7XDMR16-22725	12	6	1.8	500	2350	2700	80	50W	25,000	Yes	*	Damp	Flood 25° beam, White
			35543	LED7XDMR16-28325	12	6	1.8	500	2350	3000	80	50W	25,000	Yes	*	Damp	Narrow Flood, 25° beam, White
			35544	LED7XDMR16-28335	12	6	1.8	500	1550	3000	80	50W	25,000	Yes	*	Damp	Flood 35* beam, White
PAR30	MED	12	98755	LED12DP303W83035	120	6	3.66	950	2600	3000	80	75W	25,000	Yes	*	Damp	Flood, 35° beam, White, STIR
W			98811	LED12DP3L3W83035	120	6	4.61	950	2600	3000	80	75W	25,000	Yes	*	Damp	Accent, 35" beam, White, STIR
PAR38	MED	11	91360	LED11P38W830/25	120	6	5.04	950	4000	3000	80	90W	10,000		-	Wet	Flood, 25" beam, White, STIR
9		15	32213	LED15DP38W830/40	120	6	5.04	1300	2300	3000	81	90W	25,000	Yes	*	Wet	Flood, 40° beam, White, STIR

Example #1 Point Source Display Lighting

Lamp Type	Base Type	Watts	PC	Description	Volts	Case Qty	MOL (in)	Lumens	CBCP	Color Temp.	CRI	Watt Replacement	Rated Life Hours L70	Dimmable	Energy Star	Location	Additional Info
MR16	GU5.3	5.5	35542	LED5.5DMR1684035	12	6	1.8	460	1100	4000	80	35W	25,000	Yes	*	Damp	Flood, 35° beam, White
45000			35535	LED5.5DMR1683035	12	6	1.88	420	1000	3000	80	35W	25,000	Yes	*	Damp	Flood, 35" beam, White
			35540	LED5.5DMR1682735	12	6	1.88	400	1000	2700	80	35W	25,000	Yes	*	Damp	Flood, 35° beam, White
777		7	35546	LED7XDMR16-22725	12	6	1.8	500	2350	2700	80	SOW	25,000	Yes	*	Damp	Flood 25° beam, White
			35543	LED7XDMR16-28325	12	6	1.8	500	2350	3000	80	50W	25,000	Yes	*	Damp	Narrow Flood, 25° beam, White
			35544	LED7XDMR16-28335	12	6	1.8	500	1350	3000	80	50W	25,000	Yes	*	Damp	Flood 35* beam, White
PAR30	MED	12	98755	LED12DP303W83035	120	6	3.66	950	2600	3000	80	75W	25,000	Yes	*	Damp	Flood, 35" beam, White, STIR
U			98811	LED12DP3L3W83035	120	6	4.61	950	2600	3000	80	75W	25,000	Yes	*	Damp	Accent, 35" beam, White, STIR
PAR38	MED	11	91360	LED11P38W830/25	120	6	5.04	950	4000	3000	80	90W	10,000			Wet	Flood, 25" beam, White, STIR
(223)		15	32213	LED15DP38W830/40	120	6	5.04	1300	2300	3000	81	90W	25,000	Yes	*	Wet	Flood, 40° beam, White, STIR
T.	$L - \frac{1}{r^2} - \frac{1}{(7 \text{ ft})^2}$		_		49 ft	 .	_ Ľ	ťO.	U I	<u></u>							

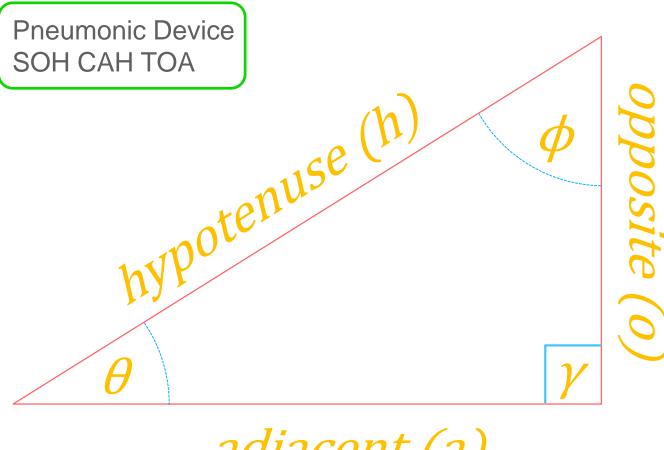
Point Source Illuminance at an Angle


- The basic calculation only handles point-source illuminance at right angles
- Illuminance at an angle involves cosines or additional data

Lighting at an Angle

- Illuminance at an angle is less than illuminance overhead at the same intensity and distance
- The angle is always evaluated between the normal from the illuminated surface and the angle of the beam.

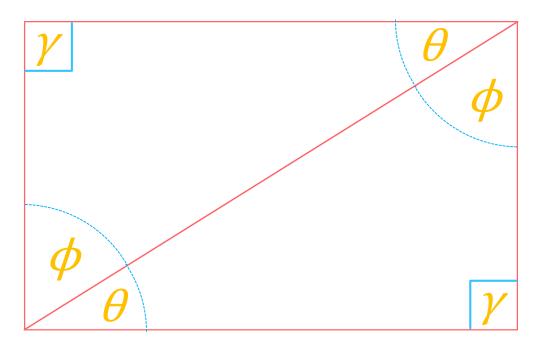
$$E = \frac{I}{r^2} \cos(\theta)$$



Triangle Trigonometry

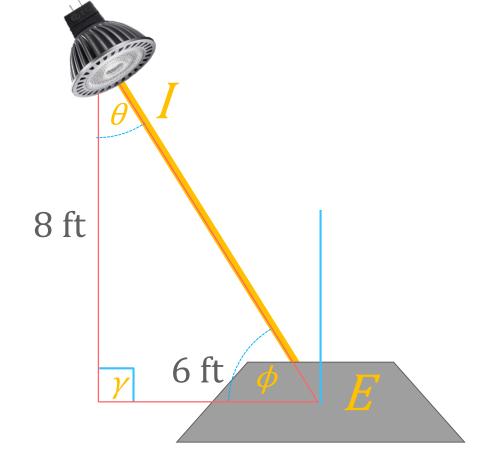
$$\cos(\theta) = \frac{a}{h}$$

$$h = \sqrt{a^2 + o^2}$$


$$180 = \theta + \phi + \gamma$$

adjacent (a)

Parallel Angles

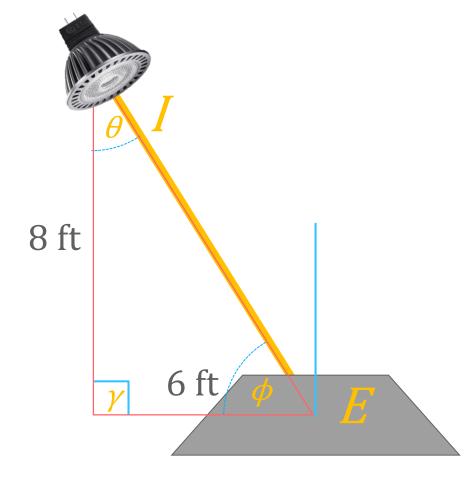

When one angle is known to be 90°, the other angles must sum together to equal 90°

 Given a light source with a center beam candela of 3,200 cd pointed at a display above a display 8 feet below and 6 feet to the right, what is the horizontal illuminance?

• Given a light source with a center beam candela of 3,200 cd pointed at a display above a display 8 feet below and 6 feet to the right, what is the horizontal

illuminance?

$$\cos(\theta) = \frac{a}{h}$$

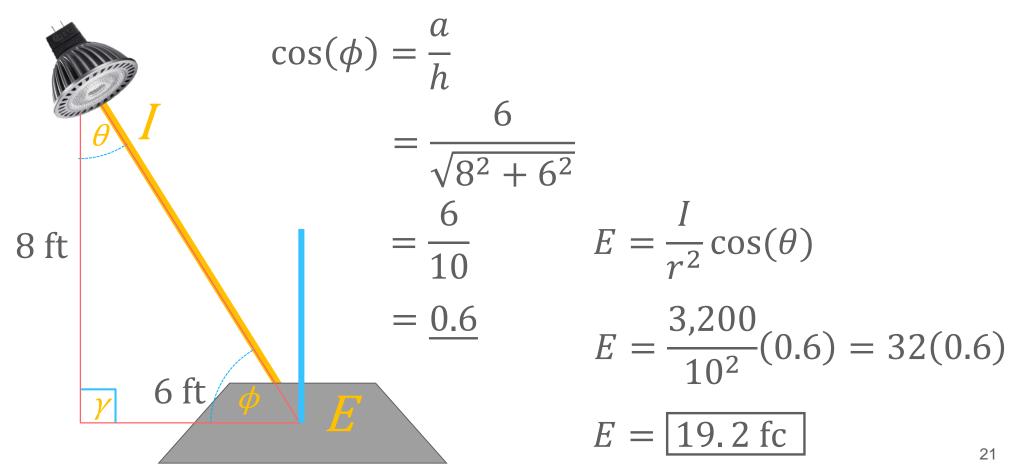

$$= \frac{8}{\sqrt{8^2 + 6^2}}$$

$$= \frac{8}{10}$$

$$= 0.8$$

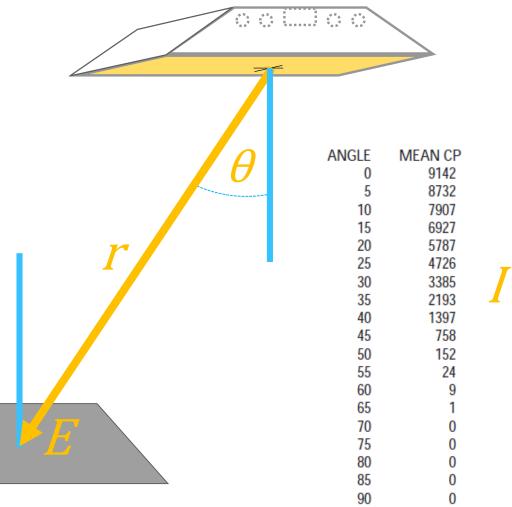
• Given a light source with a center beam candela of 3,200 cd pointed at a display above a display 8 feet below and 6 feet to the right, what is the horizontal

illuminance?


$$E = \frac{I}{r^2}\cos(\theta)$$

$$E = \frac{3,200}{10^2}(0.8) = 32(0.8)$$

$$E = \boxed{25.6 \text{ fc}}$$


• Given a light source with a center beam candela of 3,200 cd pointed at a display above a display 8 feet below and 6 feet to the right, what is the horizontal

illuminance?

Offset Illuminance at the a Point

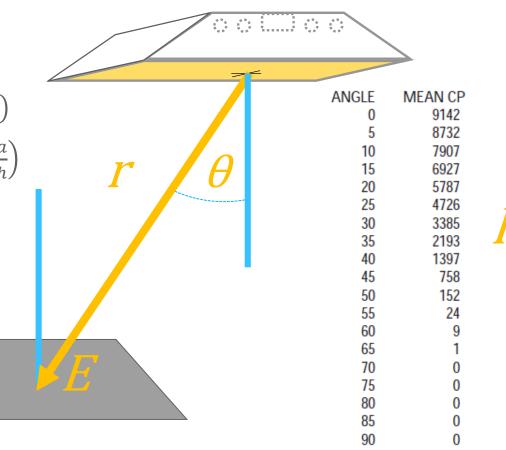

- Given a light source oriented near an object, but offset from the beam, what is the illuminance?
- Requires more information than just the light source center-beam candela
- Once we have the intensity in the specified direction, we proceed as normal

Solve for the distance

$$r = \sqrt{horiz.^2 + vert.^2}$$

 $r = \sqrt{4^2 + 8^2} = 8.9$

Solve for the missing angle



$$\theta = \arccos\left(\frac{a}{h}\right) \text{ or } \theta = \cos^{-1}\left(\frac{a}{h}\right)$$

$$\theta = \cos^{-1}\left(\frac{8}{8.9}\right)$$

$$\theta = \cos^{-1}(0.89)$$

$$\theta = 26$$

 Given a two by four troffer, what is the illuminance at a point 8 feet below and 4 feet to the left $\theta = 26.6$

It's time to interpolate

$$\frac{\text{Bigger } I - \text{Smaller } I}{\text{Bigger } \theta - \text{Smaller } \theta} = \frac{\text{Bigger } I - \text{Target } I}{\text{Bigger } \theta - \text{Target } \theta}$$
$$\frac{3385 - 4726}{30 - 25} = \frac{3385 - I}{30 - 26}$$

gero	10	/90/
	15	6927
	20	5787
	25	4726
	30	3385
	35	2193
	40	1397
Solve for <i>I</i>	45	758
/2205 /726 \	50	152
$I = 3385 - \left(\frac{3385 - 4726}{30 - 25}\right)(30 - 26)$	55	24
$I = 3303 - \left(\frac{30 - 25}{30 - 25}\right)$	60	9
(30 23)	65	1
	70	0
I = 3385 - (-268.2)(30 - 26)	75	0
	80	0
	85	0
I = 3385 - (-1073) = 4458 cd	90	0

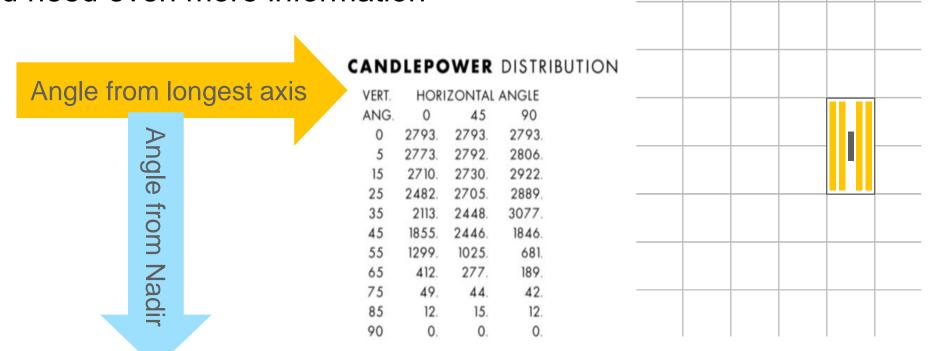
MEAN CP

9142

ANGLE

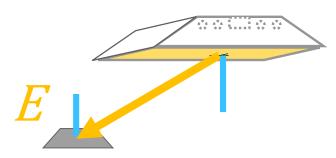
 Given a two by four troffer, what is the illuminance at a point 8 feet below and 4 feet to the left

$$\theta = 26.6$$
 $I = 4,458$ cd $r = 8.94$ ft


$$E = \frac{I}{r^2} \cos(\theta)$$

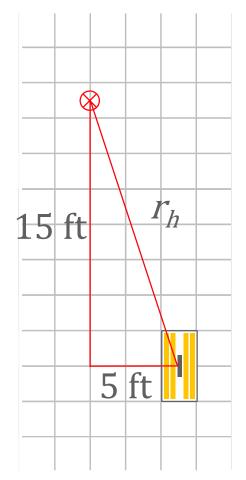
$$E = \frac{4,458 \text{ cd}}{(8.9 \text{ ft})^2} \cos(26) = (56 \text{ fc})(0.90)$$

$$E = 51 \text{ fc}$$

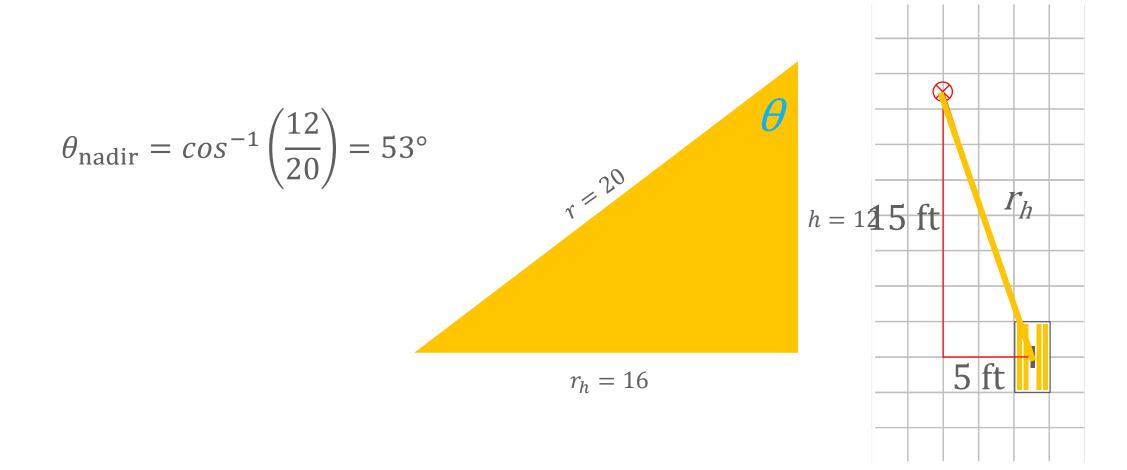

Compound Angles

- Previous example had the measurement point aligned with the light fixture
 - What about a measurement point offset from the axis of symmetry?
- We'd need even more information

• Given a two-by-four troffer positioned 5 feet to the east and 15 feet to the south of our work surface. If the work surface is 12 feet below the


luminaire plane, what is the horizontal illuminance

Let's first solve for r.


$$r_h = \sqrt{(5 \text{ ft})^2 + (15 \text{ ft})^2} = 16 \text{ ft}$$

$$r = \sqrt{(12 \text{ ft})^2 + (16 \text{ ft})^2} = 20 \text{ ft}$$

$$r = 19.8$$

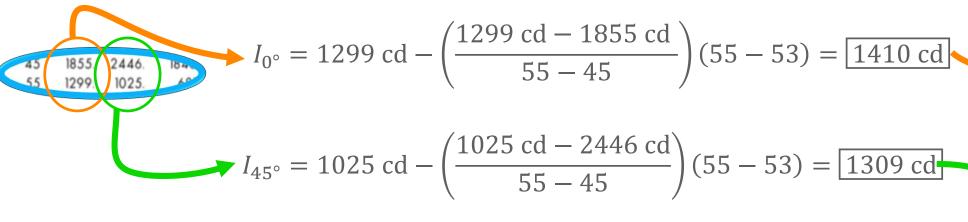
Now let's solve our angle from nadir

Now let's solve our rotated angle for the long axis


$$\theta_{\text{rotation}} = \cos^{-1}\left(\frac{15}{16}\right) = 20^{\circ}$$

 We now have enough data to look-up the intensity from our candela table

CANDLEPOWER DISTRIBUTION


HODIZONITAL ANICLE

VERI.	HORI	ZONIAL	ANGLE
ANG.	0	45	90
0	2793.	2793.	2793.
5	2773.	2792.	2806.
15	2710.	2730.	2922.
25	2482.	2705.	2889.
35	2113.	2448.	3077.
45	1855.	2446.	1846.
55	1299.	1025.	681.
65	412.	277.	189.
75	49.	44.	42.
85	12.	15.	12.
90	0.	0.	0.

$$r = 20$$
 $\theta_{\text{nadir}} = 53^{\circ}$ $\theta_{\text{rotation}} = 20$

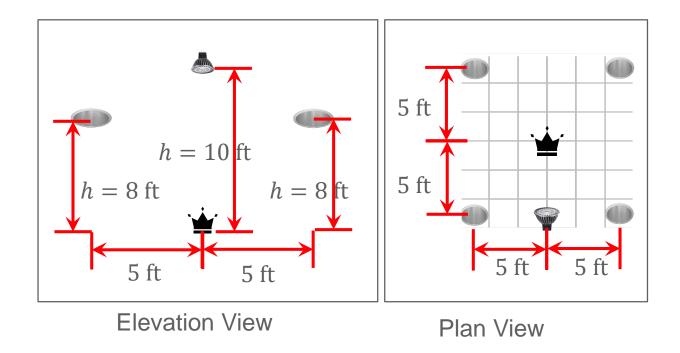
Solve for the angle from nadir

Now solve for the rotation angle

$$I = 1410 - \left(\frac{1410 - 1309}{45 - 0}\right)(45 - 20) = \boxed{1354 \text{ cd}}$$

$$r = 19.8$$
 $\theta_{\text{nadir}} = 52.7^{\circ}$ $\theta_{\text{rotation}} = 18.3^{\circ}$ $I = 1354$

Solve for the Illuminance


$$E = \frac{I}{r^2}\cos(\theta)$$

$$E = \frac{1354}{20^2}\cos(53)$$

$$E = 2.0 \text{ fc}$$

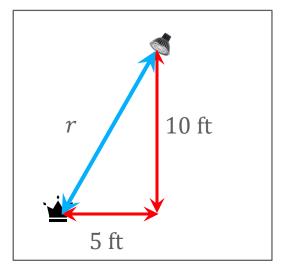
Example #5 One Last Example for Your Own

 You are lighting a museum exhibit featuring a crown on a pedestal. There is one narrow spot lamp (4,000 cd) pointed directly at the pedestal and 4 general downlights identically spaced around the pedestal. Calculate the horizontal illuminance on the pedestal.

Downlight Data

Example #5 Solution

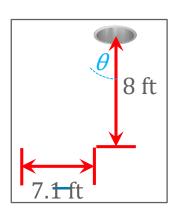
- Solve one lighting system, then the other
- Spot light
 - First find the distance


$$r = \sqrt{10^2 + 5^2} = \sqrt{125} = 11.2 \text{ ft}$$

Find the angle from nadir or use the radio of sides

$$\theta_{\text{nadir}} = \cos^{-1}(\frac{10}{11.2}) = 26.8^{\circ}$$

Inverse Square Law


$$E = \frac{4000 \text{ cd}}{(11.2 \text{ ft})^2} \cos(26.8) = \frac{4000 \text{ cd}}{(11.2 \text{ ft})^2} \left(\frac{10}{11.2}\right) = 28.5 \text{ fc}$$

Elevation View

Example #5 Solution - Downlights

- Symmetrical, do once, multiply by 4
 - Angles for angles for nadir and rotation are

$$\theta_{\text{nadir}} = \cos^{-1}\left(\frac{8}{\sqrt{8^2 + 7.1^2}}\right) = 41.6^{\circ}$$

$$\theta_{\text{rotation}} = \cos^{-1}\left(\frac{5}{7.07}\right) = 45^{\circ}$$

Interpolate Intensity from Table

$$I = 554 - \left(\frac{554 - 946}{45 - 40}\right)(45 - 41.6) = 820 \text{ cd}$$

Inverse Square Law!

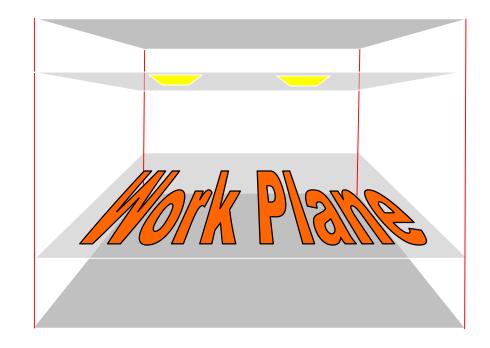
$$E = \frac{820 \text{ cd}}{(10.7 \text{ ft})^2} \cos(41.6) = 5.4 \text{ fc}$$

ROTATION

NADIR

CA	NDEL	A T	BLE -	TYPE	C				
	0	22.5	45	67.5	90	112.5	135	157.5	180
0	2245	2245	2245	2245	2245	2245	2245	2245	2245
5	2358	2350	2330	2317	2335	2348	2343	2337	2352
10	2544	2486	2412	2398	2444	2506	2498	2450	2465
15	2635	2535	2398	2406	2467	2606	2606	2487	2513
20	2537	2407	2250	2325	2351	2581	2581	2371	2455
25	2244	2112	1966	2052	2102	2361	2353	2106	2205
30	1767	1698	1634	1687	1756	1916	1913	1785	1789
35	1348	1322	1310	1360	1363	1457	1463	1396	1439
40	901	921	946	975	991	996	1027	1038	1037
45	534	54:	554	576	605	597	612	635	603
50	310	2/2	253	270	297	348	335	296	292
55	90	83	72	73	89	103	105	93	76
60	18	17	15	17	19	24	25	22	19
65	7	7	7	5	7	7	7	7	6
70	3	3	3	3	3	4	3	3	5
75	3	2	2	2	2	2	2	2	2
80	1	(0	1	1	1	1	1	1
85	1	(0	0	0	0	0	0	0
90	0	(0	0	0	0	0	0	0
90	U		U	U	U	U	U	U	U

Example #5 Drum roll please...


Add it all together

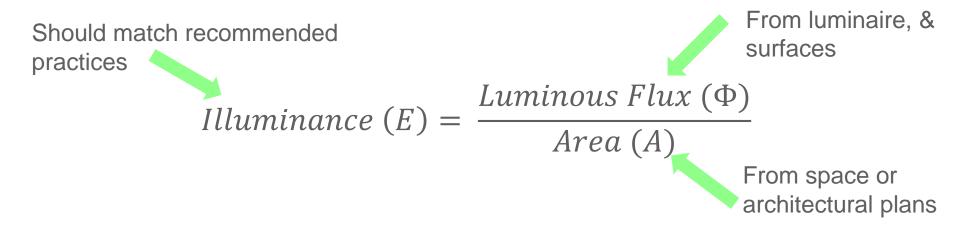
$$E = E_{\text{spot}} + E_{\text{downlights}}$$

 $E = 28.5 \text{ fc} + (5.4 \text{ fc})4 = 50.1 \text{ fc}$

LUMEN METHOD CALCULATIONS

Lumen Method

- Useful for determining either:
 - Number of luminaires to meet an <u>average</u> illuminance target
 - Average illuminance given a number of luminaires
- Calculations focused on illuminance on work plane


 Work plane height above the floor usually defined in IES handbook or Recommend Practice documents

Lumen Method

- Light reaches the work plane in one of two ways:
 - Direct light
 - Reflected light
- Lumen method considers direct and reflected light from luminaires only
- Based on the following relationship:

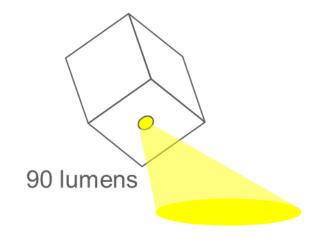
Measured in Footcandles or Lux $Illuminance \ (E) = \frac{Luminous \ Flux \ (\Phi)}{Area \ (A)}$ Measured in ft² or m²

Lumen Method

- Area (A) must be known
- Luminous flux (Φ) on the workplane or lumens depends on luminaire, surface reflectances, space size.
- This requires some more complexity in our basic calculation

Total Luminous Flux

- Total Luminous Flux has three components
 - Total lamp lumens inside the luminaire
 - Quantity of luminaires in the space
 - Coefficient of utilization (CU)
 - Measures light lost inside luminaires or reflecting onto other surfaces beside the work plane.


Illuminance
$$(E) = \frac{{Luminaire}\choose{Lumens}}{{Area}(A)}$$
 Luminaire $Area(A)$

Total Luminous Flux

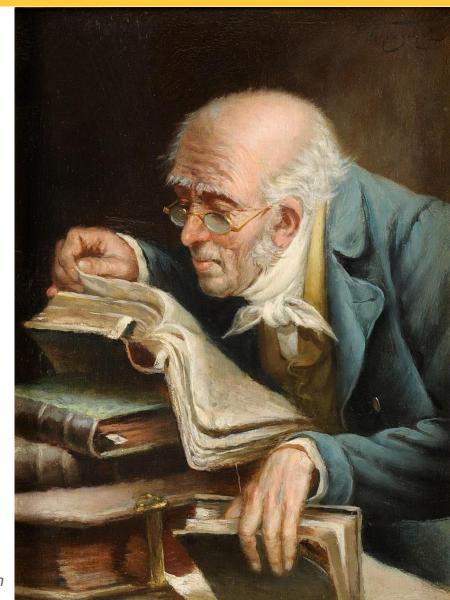
- Total Luminous Flux has two components
 - Total Lamp Lumens Inside Luminaire
 - Coefficient of Utilization
 - Measures light lost
 - Inside luminaires (luminaire efficiency)
 - Reflecting onto other surfaces beside the work plane.

1200 lumens

Coefficient of Utilization

- Unique for each luminaire type
 - Provided by manufacturers on product specification sheets
 - Shown as decimals or as percentages (91)
 - Can be greater than 100
 - reflected light near-by surfaces, but from the same light source

Coefficients of Utilization EFFECTIVE FLOOR CAVITY REFLECTANCE 20 PER (pfc=0.20)

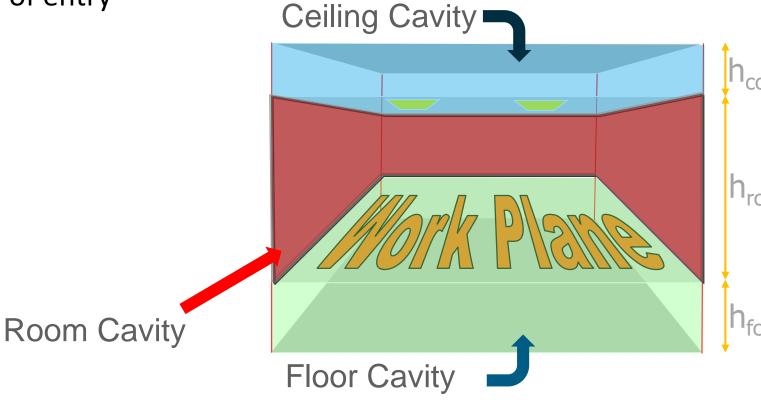

pcc		80			70		_ 5	0
pw	70	50	30	70	50	30	50	30
RCR								
0	118	118	118	115	115	115	111	111
1	108	103	97	105	101	95	95	93
2	97	89	81	94	86	81	83	78
3	89	78	69	86	77	68	73	67
4	81	68	59	79	68	59	65	57
5	75	61	53	72	60	52	58	51
6	68	56	46	67	55	46	53	45
7	64	51	41	63	50	40	47	40
8	59	46	38	57	46	36	44	36
9	56	42	34	55	41	34	40	33
10	53	39	30	51	39	30	38	30

Coefficient of Utilization

Ceiling		80%			70%			50%		
Wall	70%	50%	30%	70%	50%	30%	50%	30%	10%	
1	73	70	68	71	69	67	66	64	63	
2	67	62	58	65	61	57	59	56	53	
3	62	55	50	60	54	50	52	49	45	
4	57	49	44	55	48	43	47	43	39	
5	52	44	39	51	44	38	42	38	34	
6	48	40	34	47	39	34	38	33	30	
7	45	36	31	44	36	30	35	30	27	
8	42	33	28	41	33	28	32	27	24	
9	39	30	25	38	30	25	29	25	21	
10	37	28	23	36	28	23	27	23	19	

Reading a CU Table

- To use a CU table, we must have a few variables determined:
 - Room Cavity Ratio
 - Surface Reflectances (ρ) for:
 - Ceiling cavity
 - Room cavity
 - Floor cavity



Surface Reflectances and Cavities

Surface reflectances: ratio of light reflected off a surface

Cavity reflectance: ratio of light reflected off the surfaces in a cavity back

through the plane of entry

Cavity Ratio

- A geometric relationship of the space
 - Long and narrow
 - Short and square
 - Wide and high
- Room cavity ratio used for illuminance calculations
- Ceiling & Floor cavity ratio used for "effective reflectance" calculations

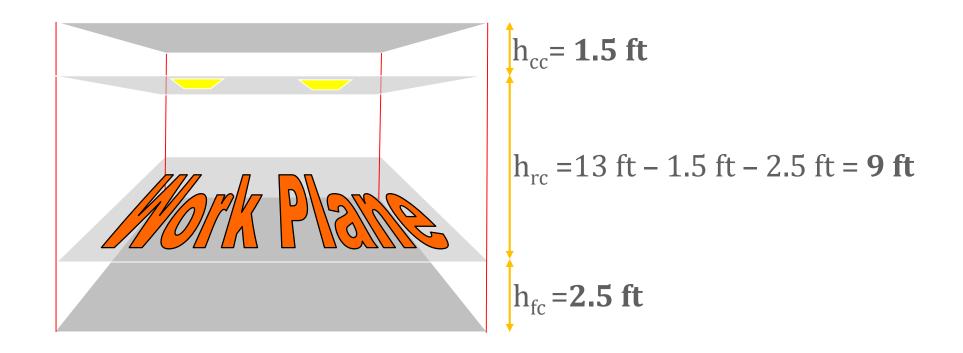
Cavity Ratio Calculation

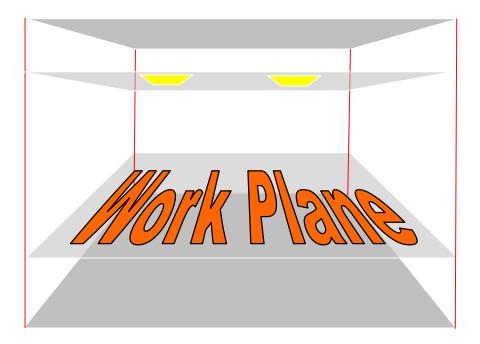
Where

Cavity Ratio =
$$\frac{2.5 h P}{A}$$

h: cavity height

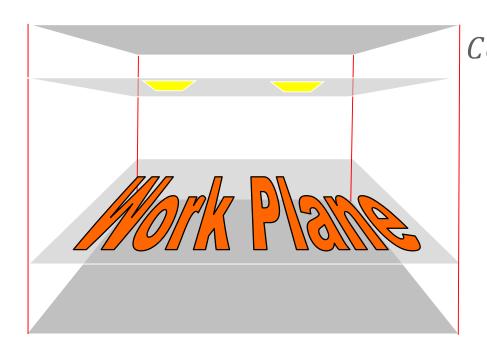
P: cavity perimeter


A: cavity area


Cavity height depends on the cavity measured

$$Room\ Cavity\ Height\ = h_{luminaire} - h_{workplane}$$

Floor Cavity Height =
$$h_{\text{Workplane}} - h_{\text{floor}}$$

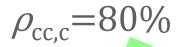

Ceiling Cavity Height =
$$h_{\text{ceiling}} - h_{\text{luminaire}}$$

Area =
$$48 \text{ ft} \times 24 \text{ ft} = 1,152 \text{ ft}^2$$

Perimeter =
 $(48 \text{ ft} \times 2) + (24 \text{ ft} \times 2) = 144 \text{ ft}$

Cavity Ratio =
$$\frac{2.5 h P}{A}$$

= $\frac{(2.5) (9 \text{ft}) (144 \text{ft})}{(1,152 \text{ ft}^2)}$
= $\frac{(3,240 \text{ft}^2)}{(1,152 \text{ ft}^2)}$
= $\boxed{2.81}$


Why Not Just Use Floor Surface Reflectance?

We mentioned floor & ceiling cavity effective reflectance...

Image courtesy Angie's List

Why Not Just Use Ceiling Surface Reflectance?

 $\rho_{\rm cc,w}=50\%$

Image courtesy Angie's List

Surface Reflectance Readings

- Identify an unobstructed surface
 - As least 1-foot by 1-foot square
- Place your illuminance meter on the surface, pointing in, toward the space
 - Record your reading
- Hold your illuminance meter 1 foot away from the surface, pointed toward the surface
 - Record your reading

$$Reflectance = \frac{\text{To Wall Reading}}{\text{To Space Reading}}$$

Effective Cavity Reflectance

reflectores in each covity	Reflectance	90	80
	Reflectance	90 80 70 60 50 40 30 20 10 0	90 80 70 60 50 40 30 20 10
	Cavity Ratio		
 We'll use a table for simplicity. 	0.2	89 88 8 <mark>8 87 86 85 85 84 84 82</mark>	79 78 78 77 77 76 76 75 74 7
	0.4	88 87 8 <mark>6 85 84 83 81 80 79 76</mark>	79 77 76 75 74 73 72 71 70 6
 Base: floor or ceiling surface 	0.6	87 86 84 82 80 79 77 76 74 73	78 76 75 73 71 70 68 66 65 6
9	0.8	87 85 8 <mark>2 80 77 75 73 71 69 67</mark>	78 75 73 71 69 67 65 63 61 5
 Wall: walls above luminaire 	1	86 83 80 77 75 72 69 66 64 62	77 74 72 69 67 65 62 60 57 5
plana (cailing) or balow			
plane (ceiling) or below	1.2	85 82 7 8 75 72 69 66 63 60 57	76 73 70 67 64 61 58 55 53 5
workplane (floor)	(1.4)	85 86 77 <mark>73 69 65 62 59 57 52 </mark>	76 72 68 65 62 59 55 53 50 4
	1.6	84 79 75 71 67 63 59 56 53 50	75 71 67 63 60 57 53 50 47 4
 Result is "effective" reflectance 	of 1.8	83 78 73 69 64 60 56 53 50 48	75 70 66 62 58 54 50 47 44 4
the cavity	2	83 77 72 67 62 56 53 50 47 43	74 69 64 60 56 52 48 45 41 3
	2.2	82 76 70 65 59 54 50 47 44 40	74 68 63 58 54 49 45 42 38 3
	2.4	82 75 69 64 58 53 48 45 41 37	73 67 61 56 52 47 43 40 36 3

81 74 67 62 56 51 46 42 38 35

81 73 66 60 54 49 44 40 36 34

73 66 60 55 50 45 41 38 34 3

73 65 59 53 48 43 39 36 ⁵⁄₃ 2 2

72 65 50 52 47 42 27 24 20 2

Example #7a More Cavity Ratios

Recall our open office:

A open office area 48 feet wide and 24 feet long has 12 foot tall ceilings. The lighting designer picked out three 20-foot long direct indirect pendants with a 18-inch aircraft cable support. The desks in the office are 30 feet high.

• If the flooring is dark grey carpet ($\rho_{\rm fc,b}$ = 20%) and the walls are a textured off-white($\rho_{\rm fc,w}$ = 50%), what is the effective floor reflectance?

Example #7a More Cavity Ratios

What is the floor-cavity ratio?

Cavity Ratio =
$$\frac{2.5 h P}{A}$$

= $\frac{(2.5) (2.5 \text{ft}) (144 \text{ft})}{(1,152 \text{ ft}^2)} = \frac{(900 \text{ ft}^2)}{(1,152 \text{ ft}^2)} = \boxed{0.78}$

 The wall & base reflectance are known, so look-up the effective reflectance:

$$\rho_{\text{fc,b}} = 20\%$$
 $\rho_{\text{fc,w}} = 50\%$

Example #5a More Cavity Ratios

Base Reflectance	40	30	20	
Wall Reflectance	90 80 70 60 50 40 30 20 10 0	90 80 70 60 50 40 30 20 10 0	90 80 70 60 50 40 30 20 10 0	
Cavity Ratio				$ ho_{ m fc,b}=20\%$
0.2	40 40 39 39 39 38 38 37 36 36	31 31 30 30 29 29 29 28 28 27	21 20 20 20 2 <mark>0</mark> 20 19 19 19 17	$P_{\text{fc,b}}$ – 2070
0.4	41 40 39 39 38 37 36 35 34 34	31 31 30 30 29 28 28 27 26 25	22 21 20 20 2 <mark>0</mark> 19 19 18 18 16	•
0.6	41 40 39 38 37 36 34 33 32 31	32 31 30 29 28 27 26 26 25 23	23 21 21 2 <mark>0 19 19</mark> 19 18 17 15	
0.8	41 40 38 37 36 35 33 32 31 29	32 31 30 29 28 26 25 25 23 22	24 22 21 2 0 19 1 <mark>9</mark> 18 17 16 14	$\rho_{\rm fc,w} = 50\%$
1	42 40 38 37 35 33 32 31 29 27	33 32 30 29 27 25 24 23 22 20	25 23 22 2 <mark>0 19 18</mark> 17 16 15 13	Pic,w 3070
1.2	42 40 38 36 34 32 30 29 27 25	33 32 30 28 27 25 23 22 21 19	25 23 22 20 19 17 17 16 14 12	$\mathbf{FCD} = 0.70$
1.4	42 39 37 35 33 31 29 27 25 23	34 32 30 28 26 24 22 21 19 18	26 24 22 20 18 17 16 15 13 12	FCR = 0.78
1.6	42 39 37 35 32 30 27 25 23 22	34 33 29 27 25 23 22 20 18 17	26 24 22 20 18 17 16 15 13 11	
1.8	42 39 36 34 31 29 26 24 22 21	35 33 29 27 25 23 21 19 17 19	27 25 23 20 18 17 15 14 12 10	
20	42 39 36 34 31 28 25 23 21 19	35 33 29 26 24 22 20 18 16 14	28 25 23 20 18 16 15 13 11 9	
2.2	42 39 36 33 30 27 24 22 19 18	36 32 29 26 24 22 19 17 15 13	28 25 23 20 18 16 14 12 10 9	
2.4	43 39 35 33 29 27 24 21 18 17	36 32 29 26 24 22 19 16 14 12	29 26 23 20 18 16 14 12 10 8	
2.6	43 39 35 32 29 26 23 20 17 15	36 32 29 25 23 21 18 16 14 12	29 26 23 20 18 16 14 11 9 8	
2.8	43 39 35 32 28 25 22 19 16 14	37 33 29 25 23 21 17 15 13 11	30 27 23 20 18 15 13 11 9 7	
3	43 39 35 31 27 24 21 18 16 13	37 33 29 25 22 20 17 15 12 10	30 27 23 20 17 15 13 11 9 7	

 Normally we'd need to interpolate the results; however, the values are the same in this for the FCR between 0.6 and 1.2

Example #7b Now it's Your Turn

- A open office area 48 feet wide and 24 feet long has 12 foot tall ceilings. The lighting designer picked out three 20-foot long direct indirect pendants with a 18inch aircraft cable support. The desks in the office are 30 inches high.
- If the ceiling tiles are very reflective ($\rho_{c,b}$ = 90%) and the walls are a textured off-white($\rho_{c,w}$ = 50%), what is the effective ceiling reflectance?

Effective Cavity Reflectance Correction Factor (1.6 length to width ratio)

Base Refl	ectance	90	80	70	60	50
Wall Refl	ectance	90 80 70 60 50 40 30 20 10 0	90 80 70 60 50 40 30 20 10 0	90 80 70 60 50 40 30 20 10 0	90 80 70 60 50 40 30 20 10 0	90 80 70 60 50 40 30 20 10 0
Cavi	ity Ratio					
	0.2	89 88 88 87 86 85 85 84 84 82	79 78 78 77 77 76 76 75 74 72	70 69 68 68 67 67 66 66 65 64	60 59 59 59 58 57 56 56 55 53	50 50 49 49 48 48 47 46 46 44
	0.4	88 87 86 85 84 83 81 80 79 76	79 77 76 75 74 73 72 71 70 68	69 68 67 66 65 64 63 62 61 58	60 59 59 58 57 55 54 53 52 50	50 49 48 48 47 46 45 45 44 42
	0.6	87 86 84 82 80 79 77 76 74 73	78 76 75 73 71 70 68 66 65 63	69 67 65 64 63 61 59 58 57 54	60 58 57 56 55 53 51 51 50 46	50 48 47 46 45 44 43 42 41 38
	0.8	87 85 82 80 77 75 73 71 69 67	78 75 73 71 69 67 65 63 61 57	68 66 64 62 60 58 56 55 53 50	59 57 56 55 54 51 48 47 46 43	50 48 47 45 44 42 40 39 38 36
	1	86 83 80 77 75 72 69 66 64 62	77 74 72 69 67 65 62 60 57 55	68 65 62 60 58 55 53 52 50 47	59 57 55 53 51 48 45 44 43 41	50 48 46 44 43 41 38 37 36 34
	1.2	85 82 78 75 72 69 66 63 60 57	76 73 70 67 64 61 58 55 53 51	67 64 61 59 57 54 50 48 46 44	59 56 54 51 49 46 44 42 40 38	50 47 45 43 41 39 36 35 34 29
	1.4	85 80 77 73 69 65 62 59 57 52	76 72 68 65 62 59 55 53 50 48	67 63 60 58 55 51 47 45 44 41	59 56 53 49 47 44 41 39 38 36	50 47 45 42 40 38 35 34 35 27
	1.6	84 79 75 71 67 63 59 56 53 50	75 71 67 63 60 57 53 50 47 44	67 62 59 56 53 47 45 43 41 38	59 55 52 48 45 42 39 37 35 33	50 47 44 41 39 36 33 32 30 26
	1.8	83 78 73 69 64 60 56 53 50 48	75 70 66 62 58 54 50 47 44 41	66 61 58 54 51 46 42 40 38 35	58 55 51 47 44 40 37 35 33 31	50 46 43 40 38 35 31 30 28 25
	2	83 77 72 67 62 56 53 50 47 43	74 69 64 60 56 52 48 45 41 38	66 60 56 52 49 45 40 38 36 33	58 54 50 46 43 39 35 33 31 29	50 46 43 40 37 34 30 28 26 24

Example #7b Solution

Ceiling Cavity Ratio

Cavity Ratio =
$$\frac{2.5 h P}{A}$$

$$= \frac{(2.5) (1.5 \text{ft}) (144 \text{ft})}{(1,152 \text{ ft}^2)} = \frac{(540 \text{ ft}^2)}{(1,152 \text{ ft}^2)} = \boxed{0.47}$$

Example #7b Solution

Base Reflectance Wall Reflectance	90 90 80 70 60 50 40 30 20 10 0	$\rho_{\rm cc,b} = 90\%$
	90 80 70 00 30 40 30 20 10 0	$\rho_{\rm cc,w} = 50\%$
Cavity Ratio	00 00 00 07 00 05 05 04 04 03	CCR = 0.48
0.2	89 88 88 87 86 85 85 84 84 82	
0.4	88 87 86 85 84 83 81 80 79 76	
0.6	87 86 84 82 80 79 77 76 74 73	
0.8	87 85 82 80 77 75 73 71 69 67	
1	86 83 80 77 75 72 69 66 64 62	
	$\frac{84 - 80}{0.40 - 0.60} = \frac{84 - \rho_{CO}}{0.40 - 0.40}$	
$\rho_{CC} = 84 -$	$-\left(\frac{84-80}{0.40-0.60}\right)(0.40-0.40)$	0.48) = 82.4

Example #8 Putting it All Together – CU, RCR, Reflectances

• Let's go back to our open office and everything we've determined so far:

A open office area 48 feet wide and 24 feet long has 13 foot tall ceilings. The lighting designer picked out three 20-foot long direct indirect pendants with a 18-inch aircraft cable support. The desks in the office are 30 feet high.

• If we used twelve 4,800 Im LED semi-direct pendants, what would the average horizontal illuminance be?

$$\rho_{CC} = 82.4$$
 $\rho_{FC} = 19.0$
 $\rho_{W} = 50.0$
 $RCR = 2.81$

Example #8 Putting it All Together

First we need a CU table

```
Coeffcient of Utilization (CU)

ho_{
m CC}
RCR
                                                                           53 50
      2 106 87 75
                                                                        52 46 42
                                                   61 46 38
                                                             54 42 34
                                                                        47 37 31
                                                                                   40 32 27
                                        67 47 37
                                                   59 43 34
                                                             52 38 31
                                                                        45
                                           41 31
                                                   55 37 28
                                                             48 33 26
                                                                        42
                                                                           30 23
                                        60 37 27
                                                   53 33 24
                                                             46 30 22
                                                                        40
                                                                           27
                                        57 32 22
                                                   50 29 20
                                                             43 26 18
                                                                        37 23 16
                              65 35 24
                                              19
                              62 32 20
                                           29
                                                   48 26 17
                                                             41 23
                                                                    15
     10 74 28 14 65 25 12
                              56 23 11
                                        49 20
                                                   42 17 8
                                                             36 15
                                                                        30
```

- Holy double interpolation, Batman...
 - Step 1: Pick one set of variables to interpolate
 - Step 2: Interpolate the result.

Example #8 Interpolation is Fun!

Let's interpolate the reflectance values first.

$$CU_{RCR=2} = 87 - \left(\frac{87 - 80}{90 - 80}\right)(90 - 82.4) = \boxed{81.7}$$

$$CU_{RCR=3} = 77 - \left(\frac{77 - 70}{90 - 80}\right)(90 - 82.4) = \boxed{71.7}$$

Then interpolate the results.

$$CU_{RCR=2.81} = 71 - \left(\frac{71.7 - 81.7}{3 - 2}\right)(3 - 2.81) = \boxed{72.9}$$

Example #8One last calculation

Illuminance (E) =
$$\frac{\left(4,800 \frac{\text{lumens}}{\text{fixture}}\right) (12 \text{ fixtures}) (0.729)}{(48 \text{ ft} \times 24 \text{ ft})}$$
$$= \frac{(41,990 \text{ lumens})}{(1152 \text{ ft}^2)} = \boxed{36.4 \text{ fc}}$$

But there is still room for refining our calculation...

Modifications to the Lumen Method -- Light Loss Factors --

Light loss factors are expected losses that would differ from the rated

output.

Recoverable Light Loss Factors

- Dirt Room Surface or Luminaire
 - Recovered by cleaning
- Lumen Depreciation
 - Recovered by relamping
- Burnout Factor
 - Recovered by replacing lamps
- Optical Degradation Factor
 - Recovered by replacing cloudy lenses
- Non-Recoverable Light Loss Factors
 - Temperature Factor
 - Ballast Factor

Modifications to the Lumen Method

-- Solve for Luminaire Quantity--

 Adjust the formula to solve for the number of luminaires needed to meet illuminance target

$$Illuminance (E) = \frac{\binom{Luminaire}{Lumens} \binom{Luminaire}{Quantity} CU}{Area (A)}$$

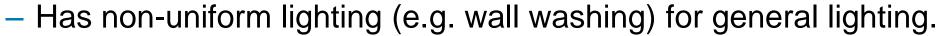
$$\binom{Luminaire}{Quantity} = \frac{Area (A) \times Illuminance (E)}{\binom{Luminaire}{Lumens} CU}$$

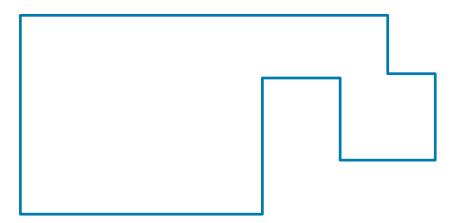
Modifications to the Lumen Method

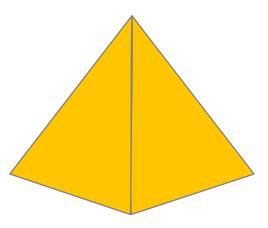
-- Different Reflectance Surfaces in Same Plane--

- A space may have different reflectance values for part of each wall
- Average the reflectance value for each of the cavity surface, weighted by size.
- Given a room with four 100 ft² walls, if one wall is red (ρ = 35) and the others are white (ρ = 50), the weighted average is:

$$\rho_{W,avg} = \frac{(35 \times 100) + (50 \times 300)}{400} = 46.5$$


Modifications to the Lumen Method-- Multiple Light Sources --


- You may have a lighting system where there are two luminaires evenly distributed through the space
- Light is additive each light source builds on the other.
- Run one calculation for each light source and add the results together.



Lumen Method Weaknesses

- Lumen method doesn't work well when the room...
 - Is very narrow and has a low ceiling
 - Has "fingers", small projections, complicated geometry
 - Has big furniture or partitions

Example #9 Lumen Method All Of Your Own

- You're asked to design new lighting in portable classrooms for a middle school. The classrooms are 38 feet long and 32 feet wide. The ceiling has a two-by-four grid with 2x4 troffers. The ceiling reflectance is 80%. The walls are 60% and the floors are 18%. The ceiling is 10 feet high. You've selected a three-lamp T8 (3100 lm) troffer with a normal ballast factor (0.88). The illuminance target is 40 fc. How many fixtures do you need to provide?
- The principal decides to relocate a art class into one portable (illuminance target 50 fc), but they accumulate dirt faster (dirt depreciation of 15 percent after 4 years), how many fixtures should you provide?

2GT8 3 32 A12 1/3 Report LTL 7421 Lumens per lamp - 2850 – Lum. eff. - 80.1% S/MH (along) 1.2 (across) 1.4

Coefficient of Utilization

Ceilling		80%			70%			50%	
Wall	70%	50%	30%	70%	50%	30%	50%	30%	10%
0	95	95	95	93	93	93	89	89	89
1	88	84	81	85	82	79	79	76	74
2	80	74	69	78	72	68	70	66	62
3	74	66	59	72	64	58	6.2	57	53
4	68	58	52	66	57	51	55	50	46
5	62	52	45	61	52	45	50	44	40
6	58	47	40	56	47	40	45	39	35
7	54	43	36	52	42	36	41	35	31
8	50	39	33	49	39	32	38	32	28
9	47	36	30	45	36	29	3.5	29	25
10	44	33	27	43	33	27	3.2	27	23

Example #9 Lumen Method All On Your Own

$$h_{RCR} = 10 \text{ ft} - 2.5 \text{ ft} = 7.5 \text{ ft}$$

 $h_{FCR} = 2.5 \text{ ft} - 0 \text{ ft} = 2.5 \text{ ft}$
 $h_{CCR} = 10 \text{ ft} - 10 \text{ ft} = 0 \text{ ft}$

$$RCR = \left(\frac{2.5(7.5 \text{ ft})(38 \text{ ft} + 38 \text{ ft} + 32 \text{ ft} + 32 \text{ ft})}{(38 \text{ ft} \times 32 \text{ ft})}\right) = 2.16$$

$$FCR = \left(\frac{2.5(2.5 \text{ ft})(38 \text{ ft} + 38 \text{ ft} + 32 \text{ ft} + 32 \text{ ft})}{(38 \text{ ft} \times 32 \text{ ft})}\right) = 0.72$$

$$\rho_{CC} = 80\%$$
 $\rho_{W} = 60\%$
 $\rho_{FC} = ??$

Example #9 Lumen Method All On Your Own

Base Reflectance	20	10
Wall Reflectance	90 80 70 60 50 40 30 20 10 0	90 80 70 60 50 40 30 20 10 0
Cavity Ratio		
0.2	21 20 20 20 20 20 19 19 19 17	11 11 11 10 10 10 10 9 9 9
0.4	22 21 20 20 20 19 19 18 18 16	12 11 11 11 10 10 9 9 8
0.6	23 21 <mark>21 20 19 19 19 18 17 15</mark>	13
0.8	24 <mark>22</mark> 21 20 19 19 18 17 16 14	15 <mark>14</mark> 1312111010987
1	25 23 22 20 19 18 17 16 15 13	16 14 13 12 12 11 10 9 8 7

$$\rho_{\text{Base}=20} = 22 - \left(\frac{22 - 21}{0.8 - 0.6}\right)(0.8 - 0.72) = \boxed{21.6}$$

$$\rho_{\text{Base}=10} = 14 - \left(\frac{14 - 13}{0.8 - 0.6}\right)(0.8 - 0.72) = \boxed{13.6}$$

$$\rho_{\text{FC}} = 21.6 - \left(\frac{21.6 - 13.6}{0.2 - 0.10}\right)(0.2 - 0.18) = \boxed{20}$$

Example #9 Lumen Method All On Your Own

2GT8	3 32 /	112 1	/3			l	Floor ret	lectani	es are 2	1%.
Repo			l 1p - 28	50 – I	ши	off - S	en 103			
	•		.2 (ac			e m v	9 9. 170			Interpolate here: CU = 77
			tilizat	ion						interpolate here. $co = 77$
Ceilling Wall	70%	80% 50%	30%	70%	70% 50%	30%	50%	50% 30%		
0	95	95	95	93	93	93	89	89	89	
1	88	84	_ <u>\$</u> }_	85	82	79	79	76	74	
2	80	74	69	78	72	68	70 63	66	62	
3	74	∢66 58	59	72	64	58	62	57 50	53	
4 5	68 62	52	52 45	66	57	51	55 50	50 44	46 40	
6	58	47	40	61 56	52 47	45 40	45	39	35	Interpolate here: CU = 70
7	54	43	36	52	42	36	41	35	31	
8	50	39	33	49	39	32	38	32	28	
9	47	36	30	45	36	29	35	29	25	
10	44	33	27	43	33	27	32	27	23	

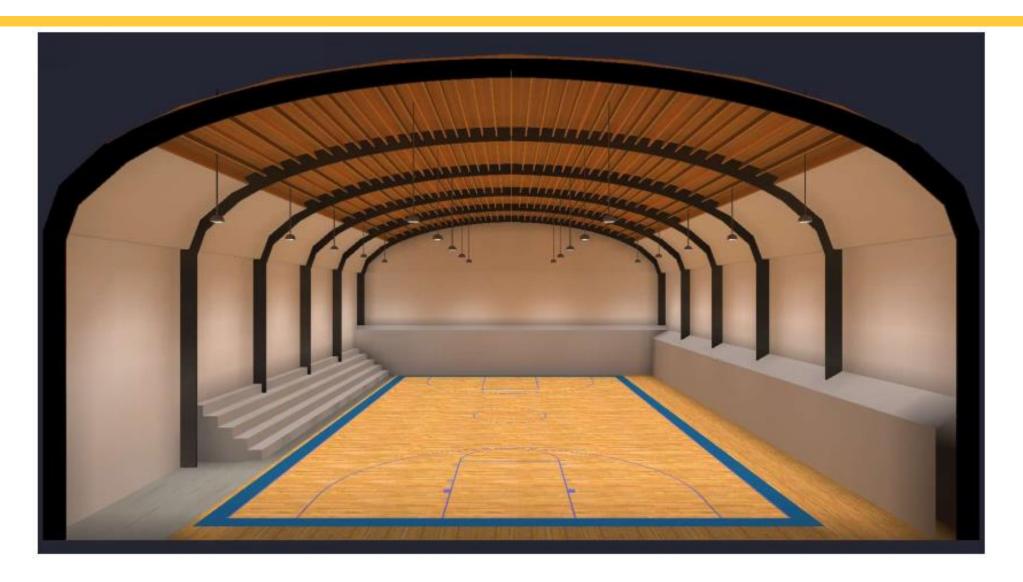
$$CU = 70 - \left(\frac{70 - 77}{3 - 2}\right)(3 - 2.16) = \boxed{75.9}$$

Example #9 Lumen Method All On Your Own

$$\binom{\text{Luminaire}}{\text{Quantity}} = \frac{Area(A) \times Illuminance(E)}{\binom{Luminaire}{Lumens}CU}$$

$${\text{Luminaire} \atop \text{Quantity}} = \frac{(32 \text{ ft} \times 38 \text{ ft})(40 \text{ fc})}{\left(0.88 \times 3100 \frac{\text{lm}}{\text{lamp}} \times 3 \text{ lamps}\right) 0.759}$$

$$\binom{\text{Luminaire}}{\text{Quantity}} = \frac{(48,640 \text{ lm})}{(8,184 \text{ lm})0.759} = 7.83 \approx \boxed{8}$$


Example #9 Lumen Method All On Your Own

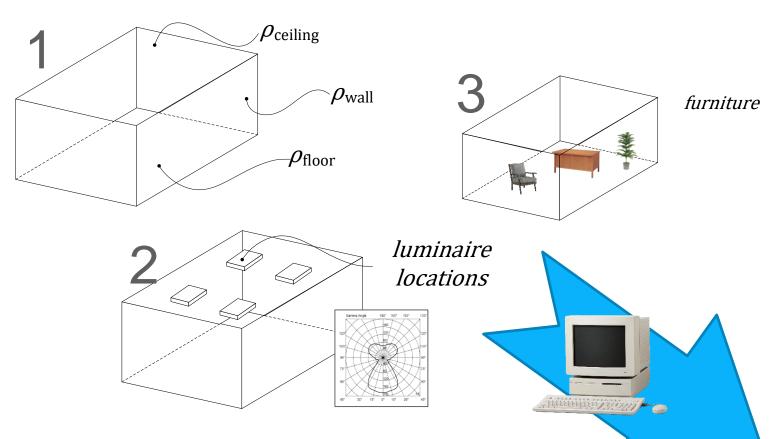
- But what about the art classroom?
- · Same thing, but we add another light loss factor

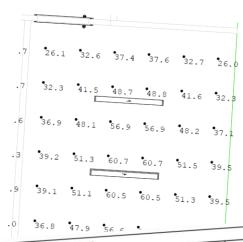
$${\text{Luminaire} \atop \text{Quantity}} = \frac{(32 \text{ ft} \times 38 \text{ ft})(40 \text{ fc})}{\left(0.88 \times 0.85\right) \times 3100 \frac{\text{lm}}{\text{lamp}} \times 3 \text{ lamps}\right) 0.759}$$

$$\binom{\text{Luminaire}}{\text{Quantity}} = \frac{(48,640 \text{ lm})}{(6.956 \text{ lm})0.759} = 9.21 \approx \boxed{10}$$

3D Photometric Models

Computer-Aided Lighting Calculations

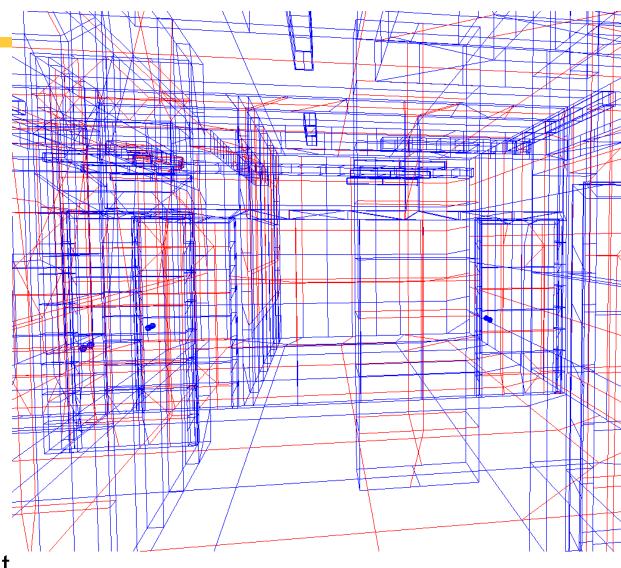

- Software Modeling
- Software Packages
- Tips & Tricks



Software Modeling

- Combines information about different aspects of a space
 - Space Details
 - Geometry & Surface Finishes
 - Object Details
 - Geometry & Surface Finishes
 - Luminaire information
- Divides each surface into small surfaces
- Calculates light, object, and surface interactions

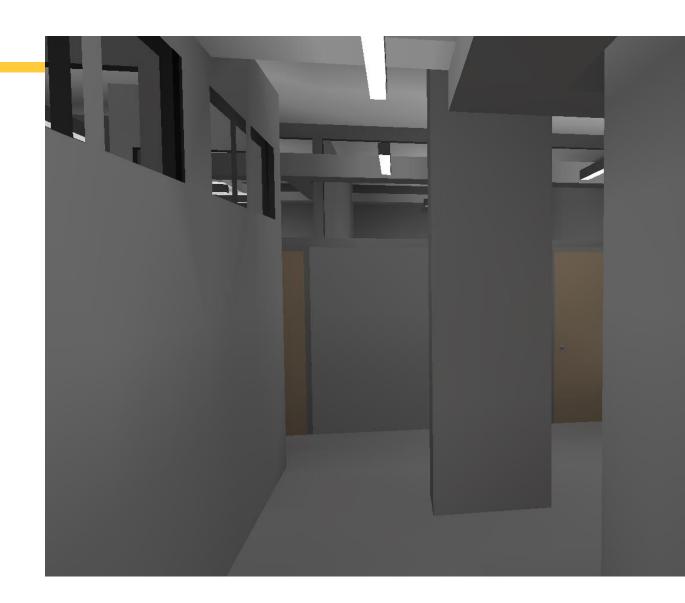
How?



			1000	Avg/Min	Max/Min
Calculation Summary	Avg	Max	Min	3.08	4.97
Label	46.15	74.6	15.0	1.27	1.50
3209	40.88	48.3	32.1	1.43	1.84
3209A	43.55	56.2	29.2	1.39	1.79
3209B	40.63	52.2	26.0	1.64	2.33
3209C	42.75	60.7	20.0		2.33
3209D	4E 10				3.02
3209E					3.10
3209G	THE REAL PROPERTY.	7			
3209H		-			

Software Photometric Approach

- Surfaces divided into small elements
- For each luminaire, calculates
 - Light that lands on each element
- For each element, calculates light
 - Transmitted
 - Refracted less so
 - Reflected
 - Absorbed
- For each element (again) light from other elements
- Calculation grids
- Approach is based on a numerical method that solves a series of partial differential equations



Software Photometric Approach

Usually two options

- Direct-Only Ignores reflections
 - Good for parking lots
- Full Radiosity Calculates surface interactive effects
 - Must-have for interior spaces

Calculation Summary					
Label	Avg	Max	Min	Avg/Min	Max/Min
3209	22.68	38.8	3.3	6.87	11.76
3209A	19.47	24.7	13.7	1.42	1.80
3209B	20.60	29.4	12.6	1.63	2.33
3209C	20.60	29.4	12.7	1.62	2.31
3209D	21.21	35.0	9.6	2.21	3.65
3209E	21.51	35.6	9.6	2.24	3.71
3209G	18.12	30.5	5.7	3.18	5.35
3209н	18.01	30.4	5.5	3.27	5.53

Relative Benefits of Calculation Approaches

	Lumen Method	Radiosity Modeling
Speed of Calculation	Very quick	Pretty fast for simple spaces, requires significant times to make it look realistic or model complex spaces
Level of Information Required	Area, Ceiling Height, Surface Reflectances	As lumen method, plus: Luminaire spacing; Space geometry details; Furniture layout and details
Daylighting support	No	Yes, with additional details, site orientation, window shade models, and window dimensions and materials
Calculation output	Average only	Point-by-point, uniformity, luminance
Support for complex geometry	No	Yes
Speed	Very quick, spreadsheet friendly	Simple models quick, complex models can take a lot of time to assemble and calculate

Tool Options

STAND ALONE TOOLS

- AGi32
- Visual
- **DIALux**
 - Litepro DLX
- Relux
- Elite Software "Light"
 - Only does Lumen Method Calcs

PHOTOMETRICS

Architectural Suites

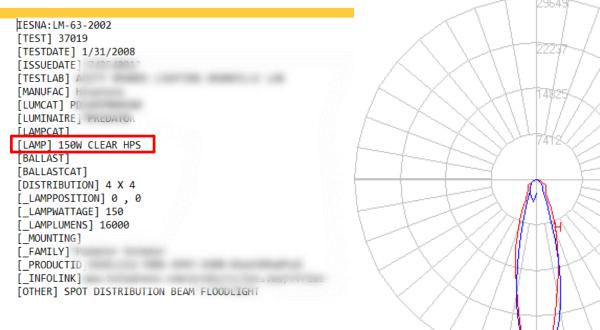
- Visual
- ElumTools
- **DesignMasterPhotometrics**
- Revit
- Relux
- LightStanza

Super User Tools

- Radiance
- LightTools

TIPS & TRICKS

Be successful – diligence & documentation


IES Files – Wuzzat?

- Digital file that records how a luminaire distributes light
- May be a relative or absolute photometry file
- Usually provided by manufacturers via their website
 - Some require direct requests

Modifying IES Files

- Sometimes you might have to modify an IES file
- Usually you can make the modifications in your software suite
- Sometimes the modifications are made at the manufacturer level

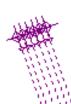
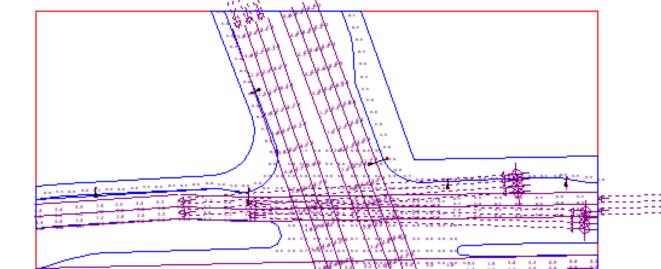
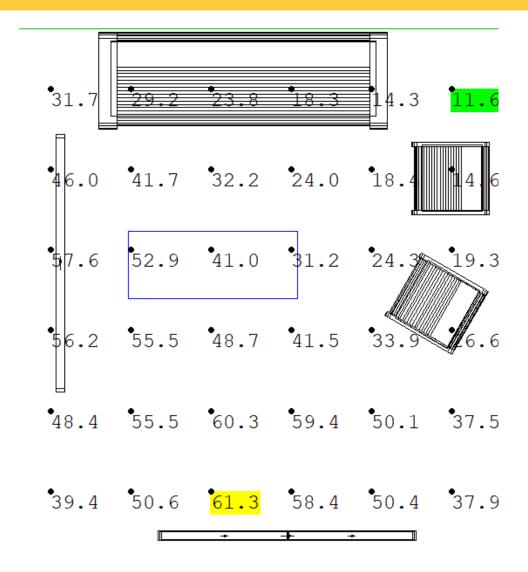

Calculation Grids, Elevations, & Orientations

Table 24.2 | Educational Facilities Illuminance Reco

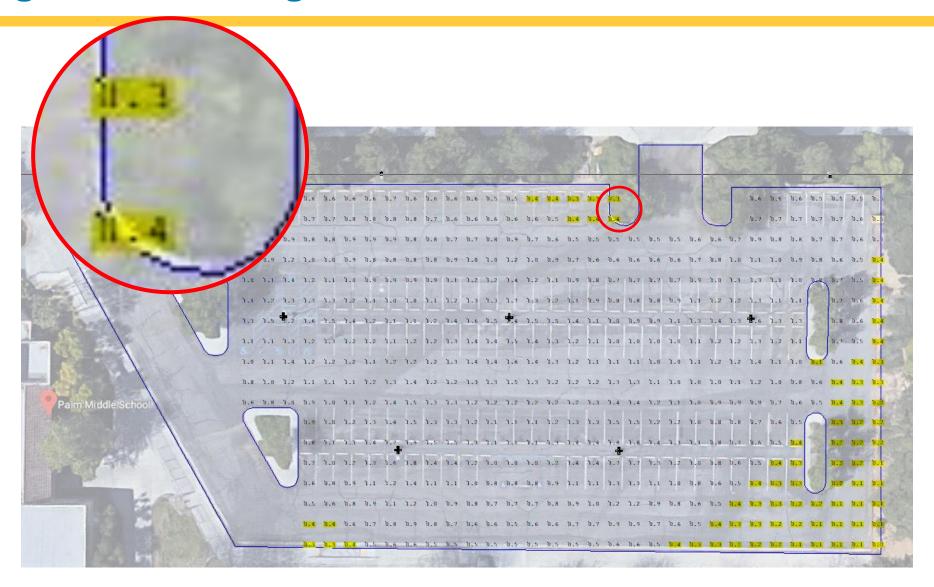
Applications and Tasks ^a	Notes
AUDITORIA	(Multipurpose continued)
Dancing (Social)	E _h @dance floor; E _v @S' AFF
• Exhibition	E _h @2' 6" AFF; E _v @5" AFF
• Study	Typical paper and/or laptop
Testing	E _h @2' 6" AFF; E _v @4" AFF
Combination	Typical paper and/or laptop
• Laptop only	CSA/ISO Type I and II negative polarity screens.
Paper only	Variety of paper tasks
Performance	Dedicated to artistic performan
• House	As the architect coordinates co
During event	E _h @floor; E _v @4' AFF
Pre/Post event	E _h @floor; E _v @5' AFF
• Stage	
Access ramps/stairs	See AUDITORIA/Circulation
Amateur productions	
Dance (performance)	E _h and E _v @5' AFF
Demonstration	E _h @3' AFF; E _v @4' 6" AFF
Music	E _h and E _v @4' AFF
• Theater	Simple, no stage lighting cues E, and E, @S' AFF


- Calculating illuminance grids key reason for making a model
- Grids need to be located appropriately
 - IES Handbook & RP's show grid locations
- For vertical grids, you may need to do multiple sets of calculations with different sensor orientations
- Roadway lighting standards are completely different

Roadway Lighting Grids


Models use low angle reflected light at far distances to mimic vehicle driver's view

Newer standards (RP-8-14 and RP-8-18) rely on luminance values as opposed to illuminance

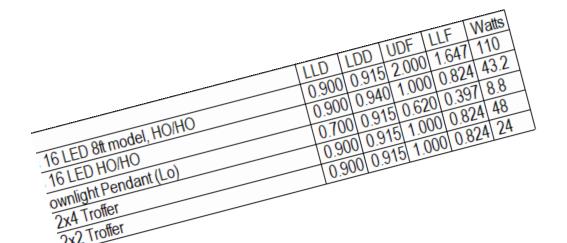


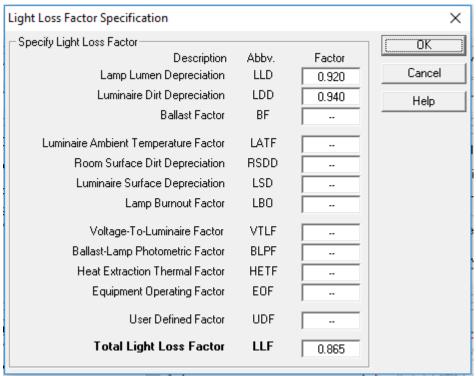
Excluding Points – Being Ethical

- Sometimes your site geometry/furniture plan don't line up exactly
- You may need to exclude points from the grid
 - Improves average and min/max (avg/max) ratios
 - Can obscure real design issues

Excluding Points – Being Ethical

Surface Materials, Colors and Specularity


- Surface materials impact the look of your space
 - Reflecting light off colored walls will make the light take on the hue of the wall.
- Be cautious when modeling saturated colors
- Specular surfaces are very reflective, but appearance in models can be inaccurate



Light Loss Factors – Entry & Tracking

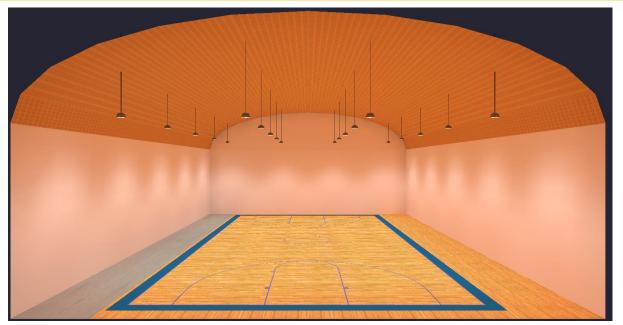
- Clearly state your LLFs and show them in your summary tables
 - Notes as applicable
- Allows apples-to-apples or-equal comparisons

- 3. Each calculation grid highlights the maximum illuminance (yellow) and minimum illuminance (green).
- 4. Lumianire C1, the 8-foot Finelight pendants have a user-defined light loss factor, (UDF) of 2.0 to scale up a 4' luminaire to match the light output of an 8' luminaire.
- 5. All luminaire (lamp) lumen depreciation (LLD) factors evaluated at end-of-life based on manufacturer listed data.
- All luminaire dirt depreciation (LDD) factors evaluated for a clean interior environment with 12-month cleaning cycles. The LDD value was evaluated for a WX depreciation curve per IES/NALMCO RP-36-15 Figure 6, where LDD = e^(-0.020t^0.596).

Renaming/Tracking Your Input Files

- KBL-A-XX-H-35K-8-UL W_CXBC16_CONFIGURED.ies
- SE130-A5008.ies
- D-1000w-PSMH-SPORT-AR45-A.ies
- IES H-15112-100W INC.IES
- GV10DMH00XX8NNX.ies
- ₱₱ M9700 100S TSP.ies
- PD15AHP00XS0X.ies
- STR-SLM-2M-_-04-D-UL-1000-40K.IES Best Practice:
- (ES CNC-B01-LFD-F1-RW.ies
- LDRV-5MO-C03-E,ies
- E5 RO-WO-2T5.ies
- RWW-T1BX40MLies
- MAQ-A120-7-LED-E1-SW.IES
- FS PSL-175-MH-XX-XX.ies
- VPL-B01-LED-E1-GL2.ies
- MHMX-D-W-1000.ies
- Al-WN-1T5.ies

- IES files are invariably named things that are hard to recognize
- IES files may be in various locations on your network or local machine
- - Pre-append names with details


ACME – Cobrahead – WhizBang Line (ACF28300D45MVOLT).ies

- Save a copy of the cutsheet with the .ies file
- Keep a copy of these files with your model

Compound Geometry

- Gage the degree to which fancy geometry will impact your model
 - More surfaces = more analysis time
 - Makes your results look similar to the real world
- Consider turning off detailed surfaces while you narrow in on your proposed layout and fixture lumen package – turn on details when you're nearly ready
- Turn off surfaces that are hidden from view
- Simplify curved surfaces

Compound Geometry

Min

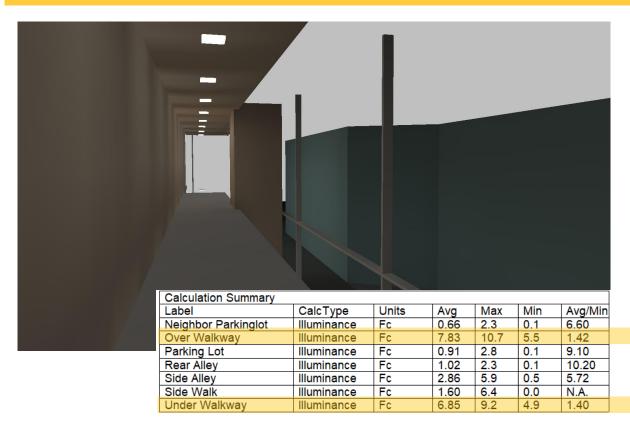
38.1

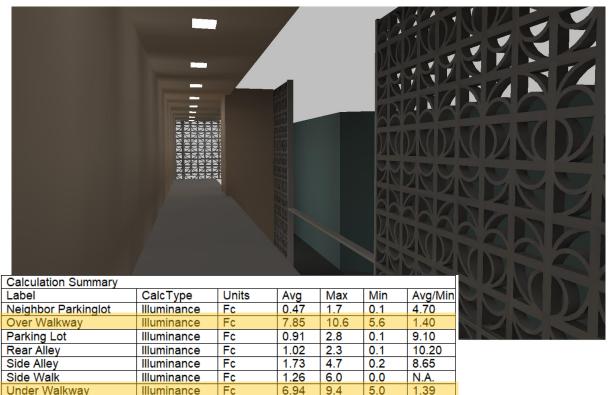
Avg/Min

1.24

Max/Min

1.34

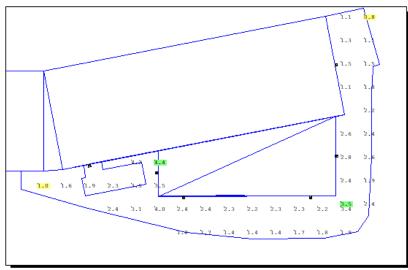

Percent Difference =
$$\left(1 - \frac{47.3}{55.1}\right) = 14.2\%$$


Avg

Max

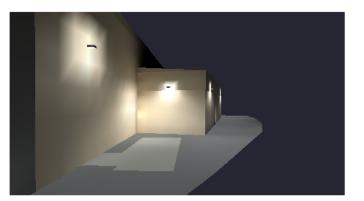
51.1

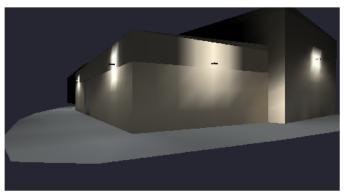
Compound Geometry


$$2nd \ Floor \ Percent \ Difference = \left(1 - \frac{7.83}{7.85}\right) = 0.2\%$$

$$1st \ Floor \ Percent \ Difference = \left(1 - \frac{6.85}{6.94}\right) = 1.3\%$$

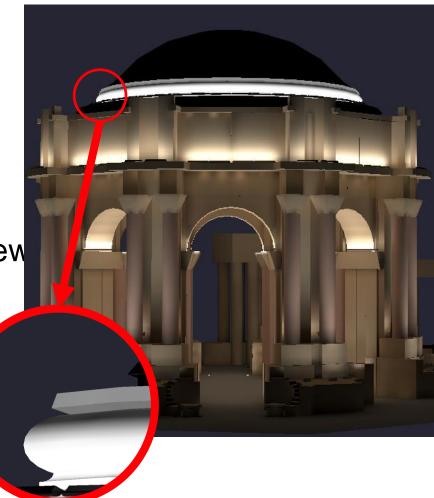
Meaningful Presentation of Data


- Present your results in a way to maximize impact and show your work
 - High light the minimum and maximum values in your calculation grids
 - Include full model numbers of the luminaires you're going to recommend
 - Make notes meaningful and specific
 - Date your drawings
 - Have a 2nd set of eyes review your data


Meaningful Presentation of Data

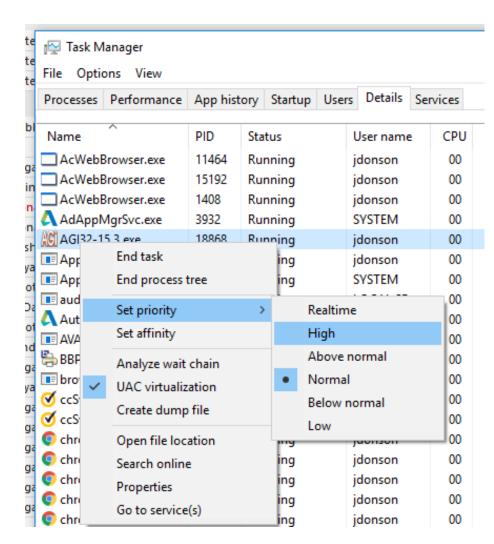
Notes:

- 1. Surface reflectance of walls measured in the field, approximately 67%.
- Luminaire locations and mounting height based on pre-bid MEP drawing set, dated November, 11, 2018. Luminaires mounted 20 ft AFF.
- 3. Each calculation grid highlights the maximum illuminance (yellow) and minimum illuminance (green).
- 4. Consider adding an additional luminaire centered on the south wall for higher illuminance levels over the roll-up door.
- All luminaire (lamp) lumen depreciation (LLD) factors evaluated at end-of-life based on manufacturer listed data, 87% at 100,000 hours.
- 6. All luminaire dirt depreciation (LDD) factors evaluated for a clean exterior environment with 8-year cleaning cycles, 94%.
- 7. The UDF is the approximate task-tuned dimming fraction to match the basis-of-design luminaire, a 150W HPS lamp.
- 8. The Type IV luminaire is installed on the north face of the building extension.
- 9. The luminaires on B77A over the chiller pad and the south-east comer will be installed by facilities.

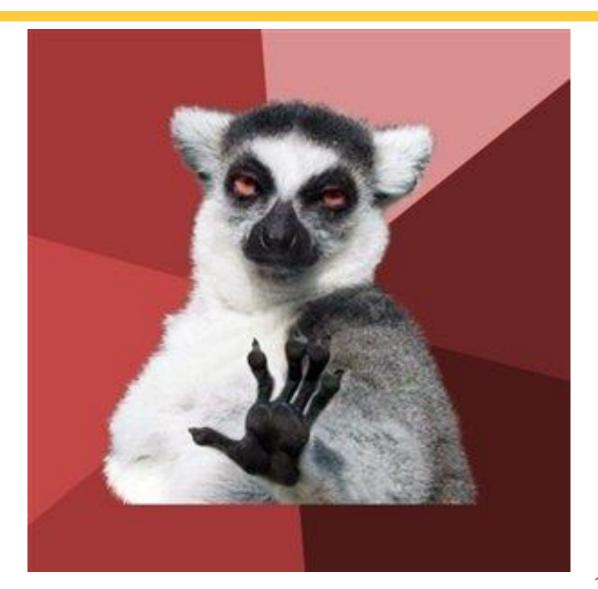


Lumin	Luminaire Schedule											
Symbo	1	Qty	Label	Arrangement	Description	Lum. Lumens	BUG Rating	Lum. Watts	LLD	LDD	UDF	
	×	5	Type II LED Wallpack		Eaton Wallpack GWC AF 02 LED E1 T2 BZ_ 7030 600 PER7 MS/DIM-L20	7109	B1-00-G2	22	0.870	0.940	0.407	
	•	1	Type IV LED Wallpack	SINGLE	Eaton Wallpack GWC AF 02 LED E1 T4FT BZ_ 7030 600 PER7 MS/DIM-L20	7288	B1-00-G2	22	0.870	0.940	0.404	

Calculation Summary							
Label	CalcType	Units	Avg	Mex	Min	Avg/Min	Mex/Min
East Hardscape	Illuminence	Fc	1.94	3.5	0.8	2.43	4.38
South Hardscape	Illuminance	Fc	2.39	4.4	1.0	2.39	4.40


Complexity vs. Simplicity

- Keep things simple, when you can
 - Faster calculations
 - Less visual clutter
- Avoid hidden details
- Turn off surfaces that are hidden from view
- Simplify curved surfaces
 - Don't flute columns


Faster, Faster... Speed Up Your Calculations

- Particular tricks for Windows users
 - Close unnecessary programs
 - Open Task Manager and assign high processor priority
 - Avoid multitasking
- If your software suite supports it, consider virtualizing parametric runs
 - OpenStudio (NREL) allows this function for energy models

Now for some don'ts...


- Don't use models to set task tuning setpoints
- Don't imply your model is they're photorealistic
 - Don't be afraid of photoshop
- Don't forget to save
- Don't manipulate .ies files directly unless you know what you're doing
- Don't forget to turn on anti-aliasing before taking screen shots

Summary

- Hand calculations are good for quick & dirty analysis
 - Point Source Calculations
 - Lumen Method Calculations
- Software Models
 - Offer greater flexibility and customization
 - Can be quicker, but requires more knowns

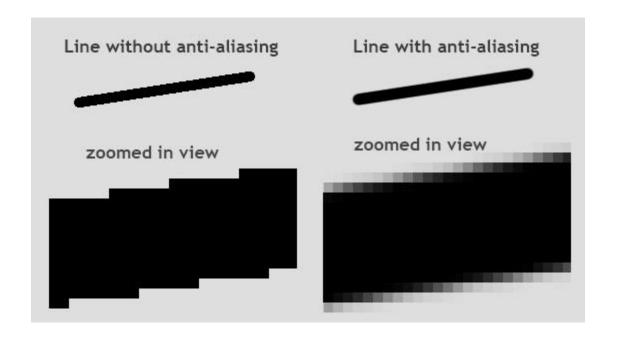
Questions?

James Donson jdonson@kw-engineering.com (510) 834-6420

https://www.linkedin.com/in/james-donson/

Class Survey (feedback)

- Check email
- Go to survey link
- Written comments are very helpful
- Other topics? Other classes you want?



THANK YOU

What is Anti Aliasing

- Anti-aliasing is a term in computer graphics and image rendering
- Graphic engines fundamentally only produce pixels
- Anti-aliasing smears the pixels to create a more realistic appearing edge

